Free fatty acids induce lipid accumulation, autophagy and apoptosis in human sebocytes

Skin Pharmacology and Physiology

Log in to MyKarger to check if you already have access to this content.

Buy FullText & PDF Unlimited re-access via MyKarger Unrestricted printing, no saving restrictions for personal use
read more

CHF 38.00 *
EUR 35.00 *
USD 39.00 *

Select

KAB

Buy a Karger Article Bundle (KAB) and profit from a discount!

If you would like to redeem your KAB credit, please log in.

Save over 20% compared to the individual article price.

Learn more

Access via DeepDyve Unlimited fulltext viewing Of this article Organize, annotate And mark up articles Printing And downloading restrictions apply

Select

Subscribe Access to all articles of the subscribed year(s) guaranteed for 5 years Unlimited re-access via Subscriber Login or MyKarger Unrestricted printing, no saving restrictions for personal use read more

Subcription rates

Select

* The final prices may differ from the prices shown due to specifics of VAT rules.

Article / Publication Details Abstract

Background: A disruption of sebocyte differentiation and lipogenesis has fatal consequences and can cause a wide spectrum of skin diseases, from acne vulgaris to sebaceous carcinoma, however, the relevant molecular mechanisms have not been fully clarified. Objectives: The induction of autophagy and apoptosis in human sebocytes in response to biologically relevant fatty acids was investigated. Methods: Free fatty acids (arachidonic acid, linoleic acid, palmitic acid and palmitoleic acid) and the pan-caspase inhibitor QVD-Oph were added in the supernatant of cultured human SZ95 sebocytes. Individual relevant proteins were analysed by Western blotting. Apoptosis and cell viability were determined, and typical autophagy structures were detected through electron microscopy. To obtain cell growth curves, cell confluence was continuously monitored by real-time cell analysis. Results: Fatty acids induced the development of intracellular lipid droplets with subsequent apoptosis, whereas arachidonic acid caused the most rapid effect. Cleavage products of caspase-3 were only detected in arachidonic acid-induced apoptosis. The high basal apoptotic rate of cultured SZ95 sebocytes was strongly suppressed by QVD-Oph. Fatty acid-induced apoptosis was also markedly inhibited by QVD-Oph, whereas intracellular lipid droplets further accumulated. While cell viability after incubation with linoleic acid, palmitic acid or palmitoleic acid and QVD-Oph was comparable with non-treated controls, arachidonic acid significantly reduced cell viability and cell density despite the concomitant pan-caspase inhibitor treatment. Using electron microscopy, typical autophagy structures were detected, such as autophagosomes and autolysosomes, at the basal level, which became more pronounced after treatment with fatty acids. Conclusions: Our findings contribute to a better understanding of the inflammation-associated mechanisms of lipogenesis and cell death induction in human sebocytes and may help to unveil the effects of fatty acid-rich human nutrition.

S. Karger AG, Basel

Article / Publication Details Copyright / Drug Dosage / Disclaimer Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

留言 (0)

沒有登入
gif