Echo-Based Hemodynamics to Help Guide Care in Cardiogenic Shock: a Review

• Zhang Y, Wang Y, Shi J, Hua Z, Xu J. Cardiac output measurements via echocardiography versus thermodilution: A systematic review and meta-analysis. PLoS One. 2019;14:e0222105. This systematic review concluded there is no significant difference in cardiac output measurements between ultrasound and thermodilution.

Stein JH, Neumann A, Preston LM, Costanzo MR, Parrillo JE, Johnson MR, et al. Echocardiography for hemodynamic assessment of patients with advanced heart failure and potential heart transplant recipients. J Am Coll Cardiol. 1997;30:1765–72.

Article  CAS  PubMed  Google Scholar 

Cordero-Caban K, Jolly G, Sakr A, Stoletniy L, Abramov D. Echocardiography-based hemodynamic monitoring use on inpatients listed for heart transplantation under 2018 allocation policy in United States. Transplant Proc. 2021;53:3036–8.

Article  PubMed  Google Scholar 

• Iwano H, Utsunomiya H, Shibayama K, Tanaka H, Isotani A, Onishi T, et al. Results of PRospect trial to Elucidate the utility of EchocarDiography-based Cardiac ouTput in acute heart failure (PREDICT). J Cardiol. 2022;S0914–5087(22)00055–7. This prospective study assessed the utility of echo-based cardiac output measurement in patients with acute decompensated heart failure. The authors concluded that in patients with systolic heart failure, low cardiac output (measured using echo) in combination with physical exam was predictor of worsening heart failure.

Omote K, Nagai T, Iwano H, Tsujinaga S, Kamiya K, Aikawa T, et al. Left ventricular outflow tract velocity time integral in hospitalized heart failure with preserved ejection fraction. ESC Heart Failure. 2020;7:168–76.

Article  Google Scholar 

Tan C, Rubenson D, Srivastava A, Mohan R, Smith MR, Billick K, et al. Left ventricular outflow tract velocity time integral outperforms ejection fraction and Doppler-derived cardiac output for predicting outcomes in a select advanced heart failure cohort. Cardiovasc Ultrasound. 2017;15:18.

Article  PubMed  PubMed Central  Google Scholar 

Mele D, Pestelli G, Molin DD, Trevisan F, Smarrazzo V, Luisi GA, et al. Echocardiographic evaluation of left ventricular output in patients with heart failure: a per-beat or per-minute approach? J Am Soc Echocardiogr. 2020;33:135–147.e3.

• Jentzer JC, Tabi M, Wiley BM, Singam NSV, Anavekar NS. Echocardiographic correlates of mortality among cardiac intensive care unit patients with cardiogenic shock. Shock. 2022;57:336–43. This is a retrospective analysis to determine whether there is an association between echo findings and morality in patients admitted to the cardiac intensive care unit with cardiogenic shock. The authors concluded that early comprehensive echo, specifically LVOT VTI, was the single best predictor of hospital mortality, highlighting the important utility of echo in the management of patients with cardiogenic shock.

Lamia B, Ochagavia A, Monnet X, Chemla D, Richard C, Teboul J-L. Echocardiographic prediction of volume responsiveness in critically ill patients with spontaneously breathing activity. Intensive Care Med. 2007;33:1125–32.

Article  PubMed  Google Scholar 

Zoghbi WA, Quinones MA. Determination of cardiac output by Doppler echocardiography: a critical appraisal. Herz. 1986;11:258–68.

CAS  PubMed  Google Scholar 

Seo Y, Iida N, Yamamoto M, Machino-Ohtsuka T, Ishizu T, Aonuma K. Estimation of central venous pressure using the ratio of short to long diameter from cross-sectional images of the inferior vena cava. J Am Soc Echocardiogr. 2017;30:461–7.

Article  PubMed  Google Scholar 

Huguet R, Fard D, d’Humieres T, Brault-Meslin O, Faivre L, Nahory L, et al. Three-dimensional inferior vena cava for assessing central venous pressure in patients with cardiogenic shock. J Am Soc Echocardiogr. 2018;31:1034–43.

Article  PubMed  Google Scholar 

Brennan JM, Blair JE, Goonewardena S, Ronan A, Shah D, Vasaiwala S, et al. Reappraisal of the use of inferior vena cava for estimating right atrial pressure. J Am Soc Echocardiogr. 2007;20:857–61.

Article  PubMed  Google Scholar 

• Szymczyk T, Sauzet O, Paluszkiewicz LJ, Costard-Jäckle A, Potratz M, Rudolph V, et al. Non-invasive assessment of central venous pressure in heart failure: a systematic prospective comparison of echocardiography and Swan-Ganz catheter. Int J Cardiovasc Imaging. 2020;36:1821–9. This is a systematic prospective review of IVC measurements to predict CVP, and the authors discovered a strong correlation with IVC diameter and CVP, especially when CVP > 10 mmHg.

Via G, Tavazzi G, Price S. Ten situations where inferior vena cava ultrasound may fail to accurately predict fluid responsiveness: a physiologically based point of view. Intensive Care Med. 2016;42:1164–7.

Article  CAS  PubMed  Google Scholar 

• Griffin M, Ivey-Miranda J, McCallum W, Sarnak M, Eder M, Bellumkonda L, et al. Inferior vena cava diameter measurement provides distinct and complementary information to right atrial pressure in acute decompensated heart failure. J Card Fail. 2022;S1071–9164(22)00107–5. This study was conducted to determine if there is a correlation between IVC and RAP. Although there is limited correlation between RA pressure estimate via IVC and that measured by invasive techniques, the two parameters may be complementary with IVC-derived estimates being more representative of changes in intravascular volume status.

Fletcher AJ, Robinson S, Rana BS. Echocardiographic RV-E/e’ for predicting right atrial pressure: a review. Echo Res Pract. 2020;7:R11-20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mitchell C, Rahko PS, Blauwet LA, Canaday B, Finstuen JA, Foster MC, et al. Guidelines for performing a comprehensive transthoracic echocardiographic examination in adults: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2019;32:1–64.

Article  PubMed  Google Scholar 

Miah N, Faxén UL, Lund LH, Venkateshvaran A. Diagnostic utility of right atrial reservoir strain to identify elevated right atrial pressure in heart failure. Int J Cardiol. 2021;324:227–32.

Article  PubMed  Google Scholar 

Vaidya GN, Ghafghazi S. Correlation of internal jugular and subclavian vein diameter variation on bedside ultrasound with invasive right heart catheterization. Indian Heart J. 2021;73:231–5.

Article  PubMed  PubMed Central  Google Scholar 

Beaubien-Souligny W, Rola P, Haycock K, Bouchard J, Lamarche Y, Spiegel R, et al. Quantifying systemic congestion with point-of-care ultrasound: development of the venous excess ultrasound grading system. Ultrasound J. 2020;12:16.

Article  PubMed  PubMed Central  Google Scholar 

Santas E, García-Blas S, Miñana G, Sanchis J, Bodí V, Escribano D, et al. Prognostic implications of tissue Doppler imaging-derived e/ea ratio in acute heart failure patients. Echocardiography. 2015;32:213–20.

Article  PubMed  Google Scholar 

Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quiñones MA. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol. 1997;30:1527–33.

Article  CAS  PubMed  Google Scholar 

• Jones R, Varian F, Alabed S, Morris P, Rothman A, Swift AJ, et al. Meta-analysis of echocardiographic quantification of left ventricular filling pressure. ESC Heart Fail. 2021;8:566–76. This study is systematic review and meta-analysis of studies done to estimate left ventricle filling pressures using echocardiography. In patients with heart failure with preserved ejection fraction, no echo indices were able to predict LV filling pressure. However, in patients with reduced systolic LV function, mitral in-flow-derived indices correlated with invasively measured LV filling pressure.

Vaidya GN, Abramov D. Echocardiographic evaluation of diastolic function is of limited value in the diagnosis and management of HFpEF. J Card Fail. 2018;24:392–6.

Article  PubMed  Google Scholar 

Sunderji I, Singh V, Fraser AG. When does the E/e’ index not work? The pitfalls of oversimplifying diastolic function. Echocardiography. 2020;37:1897–907.

Article  PubMed  Google Scholar 

• Porter TR, Shillcutt SK, Adams MS, Desjardins G, Glas KE, Olson JJ, et al. Guidelines for the use of echocardiography as a monitor for therapeutic intervention in adults: a report from the American Society of Echocardiography. J Am Soc Echocardiogr. 2015;28:40–56. This guideline summarizes recommendation for the use of echocardiography to monitor patients with heart failure.

• Pressman GS, Ranjan R, Olex S. A simple technique for bedside estimation of left atrial pressure. Echocardiography. 2019;36:1972–8. This study demonstrated a correlation between central systolic blood pressure with peak LV-LA gradient by bedside echo and invasively measured left atrial pressure.

Hubert A, Girerd N, Le Breton H, Galli E, Latar I, Fournet M, et al. Diagnostic accuracy of lung ultrasound for identification of elevated left ventricular filling pressure. Int J Cardiol. 2019;281:62–8.

Article  PubMed  Google Scholar 

Reynolds HR, Anand SK, Fox JM, Harkness S, Dzavik V, White HD, et al. Restrictive physiology in cardiogenic shock: observations from echocardiography. Am Heart J. 2006;151(890):e9-15.

Google Scholar 

Simonneau G, Montani D, Celermajer DS, Denton CP, Gatzoulis MA, Krowka M, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J. 2019;53:1801913.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23:685–713; quiz 786–8.

Tran T, Mudigonda P, Mahr C, Kirkpatrick J. Echocardiographic imaging of temporary percutaneous mechanical circulatory support devices. J Echocardiogr. 2022;

Rao P, Khalpey Z, Smith R, Burkhoff D, Kociol RD. Venoarterial extracorporeal membrane oxygenation for cardiogenic shock and cardiac arrest: cardinal considerations for initiation and management. Circ: Heart Failure. 2018;11:e004905. This study demonstrated a correlation between echo-derived pulmonary artery pulsatility index and invasively measured PAPi in patients with heart failure with reduced ejection fraction. Further, low estimated PAPi by echo was associated with poor outcomes.

Tycińska A, Grygier M, Biegus J, Czarnik T, Dąbrowski M, Depukat R, et al. Mechanical circulatory support. An expert opinion of the Association of Intensive Cardiac Care and the Association of Cardiovascular Interventions of the Polish Cardiac Society. Kardiol Pol. 2021;79:1399–410.

Cooper HA, Najafi AH, Ghafourian K, Paixao AR, Aljaabari M, Iantorno M, et al. Diagnosis of cardiogenic shock without the use of a pulmonary artery catheter. Eur Heart J Acute Cardiovasc Care. 2015;4:88–95.

Article  PubMed  Google Scholar 

Jentzer JC, Wiley BM, Anavekar NS, Pislaru SV, Mankad SV, Bennett CE, et al. Noninvasive hemodynamic assessment of shock severity and mortality risk prediction in the cardiac intensive care unit. JACC Cardiovasc Imaging. 2021;14:321–32.

Kochav SM, Flores RJ, Truby LK, Topkara VK. Prognostic impact of pulmonary artery pulsatility index (PAPi) in patients with advanced heart failure: insights from the ESCAPE trial. J Card Fail. 2018;24:453–9.

Article  PubMed  Google Scholar 

• Boretto P, Gravinese C, Frea S, Pidello S, De Ferrari G. Echocardiographic-derived pulmonary artery pulsatility index: towards non-invasive evaluation of right ventricular function. Eur Heart J - Cardiovasc Imaging. 2022;23:jeab289.385. In patients with systolic heart failure, this study demonstrated good correlation between echocardiographic derived PAPi and invasively derived PAPi.

Kang G, Ha R, Banerjee D. Pulmonary artery pulsatility index predicts right ventricular failure after left ventricular assist device implantation. J Heart Lung Transplant. 2016;35:67–73.

Article  PubMed  Google Scholar 

• Burstein B, Anand V, Ternus B, Tabi M, Anavekar NS, Borlaug BA, et al. Noninvasive echocardiographic cardiac power output predicts mortality in cardiac intensive care unit patients. Am Heart J. 2022;245:149–59. Echocardiographic cardiac power output was inversely associated with hospital mortality in patients admitted to the cardiac intensive care unit.

留言 (0)

沒有登入
gif