Mucinous Tubular and Spindle Cell Renal Cell Carcinoma (MTSC-RCC) with an Unusual Presentation in a Child

Keywords

Children, Mucinous tubular spindle cell carcinoma, MTSCC, Renal cell carcinoma, RCC

Abstract

Mucinous tubular and spindle cell renal cell carcinoma (MTSC-RCC) is a rare but favorable variant of renal cell carcinoma, predominantly found in adults. Complete surgical excision is the treatment of choice. We are reporting an intriguing case of bilateral MTSC-RCC in a 13-year-old-boy with rapid disease progression, leading to metastatic disease and subsequent demise of the child.

References

1. Bhatt JR, Finelli A. Landmarks in the diagnosis and treatment of renal cell carcinoma. Nat Rev Urol. 2014;11(9):517–25. http://dx.doi.org/10.1038/nrurol.2014.194
2. Linehan WM, Ricketts CJ. The cancer genome atlas of renal cell carcinoma: Findings and clinical implications. Nat Rev Urol. 2019;16(9):539–52. http://dx.doi.org/10.1038/s41585-019-0211-5
3. Brodaczewska KK, Szczylik C, Fiedorowicz M, Porta C, Czarnecka AM. Choosing the right cell line for renal cell cancer research. Mol Cancer. 2016;15(1):83. http://dx.doi.org/10.1186/s12943-016-0565-8
4. Siva S, Kothari G, Muacevic A, Louie AV, Slotman BJ, Teh BS, et al. Radiotherapy for renal cell carcinoma: Renaissance of an overlooked approach. Nat Rev Urol. 2017;14(9):549–63. http://dx.doi.org/10.1038/nrurol.2017.87
5. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–96. http://dx.doi.org/10.1038/nrm3758
6. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20(2):69–84. http://dx.doi.org/10.1038/s41580-018-0080-4
7. Zhang N, Ng AS, Cai S, Li Q, Yang L, Kerr D. Novel therapeutic strategies: Targeting epithelial-mesenchymal transition in colorectal cancer. Lancet Oncol. 2021;22(8):e358–68. http://dx.doi.org/10.1016/S1470-2045(21)00343-0
8. Saitoh M. Involvement of partial EMT in cancer progression. J Biochem. 2018;164(4):257–64. http://dx.doi.org/10.1093/jb/mvy047
9. Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nat Rev Clin Oncol. 2017;14(10):611–29. http://dx.doi.org/10.1038/nrclinonc.2017.44
10. Zhao T, Fu Y, Sun H, Liu X. Ligustrazine suppresses neuron apoptosis via the Bax/Bcl-2 and caspase-3 pathway in PC12 cells and in rats with vascular dementia. IUBMB Life. 2018;70(1):60–70. http://dx.doi.org/10.1002/iub.1704
11. Ma X, Ruan Q, Ji X, Yang J, Peng H. Ligustrazine alleviates cyclophosphamide-induced hepatotoxicity via the inhibition of Txnip/Trx/NF-κB pathway. Life Sci. 2021;274:119331. http://dx.doi.org/10.1016/j.lfs.2021.119331
12. Li H, Yang M. Ligustrazine activate the PPAR-γ pathway and play a protective role in vascular calcification. Vascular. 2021;20:17085381211051477. http://dx.doi.org/10.1177/17085381211051477
13. Du HY, Wang R, Li JL, Luo H, Xie XY, Yan R, et al. Ligustrazine induces viability, suppresses apoptosis and autophagy of retinal ganglion cells with ischemia/reperfusion injury through the PI3K/Akt/mTOR signaling pathway. Bioengineered. 2021;12(1):507–15. http://dx.doi.org/10.1080/21655979.2021.1880060
14. Zhang C, Guan D, Jiang M, Liang C, Li L, Zhao N, et al. Efficacy of leflunomide combined with ligustrazine in the treatment of rheumatoid arthritis: Prediction with network pharmacology and validation in a clinical trial. Chin Med. 2019;14:26. http://dx.doi.org/10.1186/s13020-019-0247-8
15. Bukhari SNA, Alotaibi NH, Ahmad W, Alharbi KS, Abdelgawad MA, Al-Sanea MM, et al. Evaluation of ligustrazine-based synthetic compounds for their antiproliferative effects. Med Chem. 2021;17(9):956–62. http://dx.doi.org/10.2174/1573406416666200905125038
16. Bian Y, Yang L, Sheng W, Li Z, Xu Y, Li W, et al. Ligustrazine induces the colorectal cancer cells apoptosis via p53-dependent mitochondrial pathway and cell cycle arrest at the G0/G1 phase. Ann Palliat Med. 2021;10(2):1578–88. http://dx.doi.org/10.21037/apm-20-288
17. Zhang H, Ding S, Xia L. Ligustrazine inhibits the proliferation and migration of ovarian cancer cells via regulating miR-211. Biosci Rep. 2021;41(1):BSR20200199. http://dx.doi.org/10.1042/BSR20200199
18. Qian J, Xu Z, Zhu P, Meng C, Liu Y, Shan W, et al. Derivative of piperlongumine and ligustrazine as a potential thioredoxin reductase inhibitor in drug-resistant hepatocellular carcinoma. J Nat Prod. 2021;84(12):3161–8. http://dx.doi.org/10.1021/acs.jnatprod.1c00618
19. Luan Y, Liu J, Liu X, Xue X, Kong F, Sun C, et al. Tetramethypyrazine inhibits renal cell carcinoma cells through inhibition of NKG2D signaling pathways. Int J Oncol. 2016;49(4):1704–12. http://dx.doi.org/10.3892/ijo.2016.3670
20. Jia Y, Wang Z, Zang A, Jiao S, Chen S, Fu Y. Tetramethylpyrazine inhibits tumor growth of lung cancer through disrupting angiogenesis via BMP/Smad/Id-1 signaling. Int J Oncol. 2016;48(5):2079–86. http://dx.doi.org/10.3892/ijo.2016.3443
21. Kim M, Kim SO, Lee M, Lee JH, Jung WS, Moon SK, et al. Tetramethylpyrazine, a natural alkaloid, attenuates pro-inflammatory mediators induced by amyloid β and interferon-γ in rat brain microglia. Eur J Pharmacol. 2014;740:504–11. http://dx.doi.org/10.1016/j.ejphar.2014.06.037
22. Yu T, Guo X, Zhang Z, Liu R, Zou L, Fu J, et al. Meta-analysis of the clinical effectiveness and safety of ligustrazine in cerebral infarction. Evid Based Complement Alternat Med. 2016;2016:3595946. http://dx.doi.org/10.1155/2016/3595946
23. Tang SL, Gao YL, He H. Influence of ligustrazine hydrochloride injection combined Buyang Huanwu Tang to intervention on blood viscosity and coagulation factor with acute cerebral infarction patients. Chin J ETMF. 2015;21:161–4.
24. Wolf MM, Kimryn Rathmell W, Beckermann KE. Modeling clear cell renal cell carcinoma and therapeutic implications. Oncogene. 2020;39(17):3413–26. http://dx.doi.org/10.1038/s41388-020-1234-3
25. Trebinska-Stryjewska A, Swiech O, Opuchlik LJ, Grzybowska EA, Bilewicz R. Impact of medium pH on DOX toxicity toward HeLa and A498 cell lines. ACS Omega. 2020;5(14):7979–86. http://dx.doi.org/10.1021/acsomega.9b04479
26. Wang X, Liu J, Xie Z, Rao J, Xu G, Huang K, et al. Chlorogenic acid inhibits proliferation and induces apoptosis in A498 human kidney cancer cells via inactivating PI3K/Akt/mTOR signalling pathway. J Pharm Pharmacol. 2019;71(7):1100–9. http://dx.doi.org/10.1111/jphp.13095
27. Yamasaki T, Seki N, Yoshino H, Itesako T, Hidaka H, Yamada Y, et al. MicroRNA-218 inhibits cell migration and invasion in renal cell carcinoma through targeting caveolin-2 involved in focal adhesion pathway. J Urol. 2013;190(3):1059–68. http://dx.doi.org/10.1016/j.juro.2013.02.089
28. Xie D, Li J, Wei S, Qi P, Ji H, Su J, et al. Knockdown of PLOD3 suppresses the malignant progression of renal cell carcinoma via reducing TWIST1 expression. Mol Cell Probes. 2020;53:101608. http://dx.doi.org/10.1016/j.mcp.2020.101608
29. Wang X, Xiao Y, Li S, Yan Z, Luo G. CORO6 promotes cell growth and invasion of clear cell renal cell carcinoma via activation of WNT signaling. Front Cell Dev Biol. 2021;9:647301. http://dx.doi.org/10.3389/fcell.2021.647301
30. Khan MI, Sobocińska AA, Brodaczewska KK, Zielniok K, Gajewska M, Kieda C, et al. Involvement of the CB(2) cannabinoid receptor in cell growth inhibition and G0/G1 cell cycle arrest via the cannabinoid agonist WIN 55,212-2 in renal cell carcinoma. BMC Cancer. 2018;18(1):583. http://dx.doi.org/10.1186/s12885-018-4496-1

留言 (0)

沒有登入
gif