Vibration exposure uncovers a critical early developmental window for zebrafish caudal fin development

Avaron F, Hoffman L, Guay D, Akimenko MA (2005) Characterization of two new zebrafish members of the hedgehog family: atypical expression of a zebrafish Indian hedgehog gene in skeletal elements of both endochondral and dermal origins. Dev Dyn 235(2):478–489. https://doi.org/10.1002/dvdy.20619

Article  Google Scholar 

Barrero LH, Cifuentes M, Rodríguez AC, Rey-Becerra E, Johnson PW, Marin LS, Piedrahita H, Dennerlein JT (2019) Whole-body vibration and back pain-related work absence among heavy equipment vehicle mining operators. Occup Environ Med. 76(8):554–559. https://doi.org/10.1136/oemed-2019-105914

Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B (1999) Sox9 is required for cartilage formation. Nat Genet 22:85–89. https://doi.org/10.1038/8792

CAS  Article  Google Scholar 

Bird NC, Mabee PM (2003) Developmental Morphology of the Axial Skeleton of the Zebrafish, Danio rerio (Ostariophysi: Cyprinidae). Dev Dyn 228(3):337–357. https://doi.org/10.1002/dvdy.10387

Article  PubMed  Google Scholar 

Busse B, Galloway J, Gray RS, Harris MP, Kwon RY (2020) Zebrafish: An Emerging Model for Orthopedic Research. J Orthop Res 38(5):925–936. https://doi.org/10.1002/jor.24539

Article  Google Scholar 

Choi T-Y, Choi T-I, Choe S-K, Kim C-H (2021) Zebrafish as an animal model for biomedical research. Exp Mol Med 53:310–317. https://doi.org/10.1038/s12276-021-00571-5

CAS  Article  Google Scholar 

Crotwell PL, Sommervold AR, Mabee PM (2004) Expression of bmp2a and bmp2b in late-stage zebrafish median fin development. Gene Expr Patterns 5(2):291–296. https://doi.org/10.1016/j.modgep.2004.07.001

CAS  Article  Google Scholar 

Cumplido N, Allende ML, Arratia G (2020) From Devo to Evo: patterning, fusion and evolution of the zebrafish terminal vertebra. Front Zool 17:18. https://doi.org/10.1186/s12983-020-00364-y

Article  PubMed  PubMed Central  Google Scholar 

Edsall SC, Franz-Odendaal TA (2010) A quick whole-mount staining protocol for bone deposition and resorption. Zebrafish 7(3):275–280. https://doi.org/10.1089/zeb.2009.0641

CAS  Article  PubMed  Google Scholar 

Edsall SC, Franz-Odendaal TA (2014) A descriptive assessment of the long term effects of simulated microgravity and vibrations on cranial neural crest cells in zebrafish embryos with a focus on the adult skeleton. PlosOne 9(2):e89296. https://doi.org/10.1371/journal.pone.0089296

Article  Google Scholar 

Franz-Odendaal TA, Edsall SC. 2018. Long-term effects of simulated microgravity and vibration exposure on skeletal development in Zebrafish. Stem Cells Develop (Special Issue): 27(18): 1278–1286. https://doi.org/10.1089/scd.2017.0266

Grande L, Bemis WE (1998) A comprehensive phylogenetic study of amiid fishes (Amiidae) based on comparative skeletal anatomy: An empirical search for interconnected patterns of natural history. Society of Vertebrate Paleontology Memoir (supplement to Journal of Vertebrate Paleontology) 4:1–690. https://doi.org/10.1080/02724634.1998.10011114

Google Scholar 

Grande L (2010) An empirical synthesis pattern study of gars (Lepisosteiformes) and closely related species, based mostly on skeletal anatomy. The resurrection of Holostei. Am Soc Ichthyol Herpetol Special publication 6, Suppl. Copeia 10(2A): 871 pp. ISBN: ISSN 0045–8511.

Hattori T, Müller C, Beghard S, Bauer E, Pausch F, Schlund B, Bsi MR, Hess A, Surmann-Schmitt C, von der Mark H, de Crombrugghe B, von der Mark K (2020) Sox9 is a major negative regulator of cartilage visualization, bone marrow and endochondral ossification. Development 137(6):901–911. https://doi.org/10.1242/dev.045203

Article  Google Scholar 

Ikegami D, Akiyama H, Suzuki A, Nakamura T, Nakona T, Yoshikawa H, Tsumaki N (2011) Sox9 sustains chondrocyte survival and hypertrophy in part through Pik3ca-Akt pathways. Development 138(8):1507–1519. https://doi.org/10.1242/dev.057802

CAS  Article  Google Scholar 

Hall, BK. 2015. Bones and Cartilage. In Bones and Cartilage (pp. 515–527). https://doi.org/10.1016/B978-0-12-416678-3.00033-1

Howe K, Clark M, Torroja C et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503. https://doi.org/10.1038/nature12111

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kanki JP, Ho RK (1997) The development of the posterior body in zebrafish. Development 124(4):881–893. https://doi.org/10.1242/dev.124.4.881

CAS  Article  Google Scholar 

Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764. https://doi.org/10.1016/S0092-8674(00)80258-5

CAS  Article  PubMed  Google Scholar 

Mandal BB, Mansfield NJ (2016) Contribution of individual components of a job cycle on overall severity of whole-body vibration exposure: a study in Indian mines. Int J Occup Saf Ergon 22(1):142–151. https://doi.org/10.1080/10803548.2015.1116815

Article  Google Scholar 

Morgan LJ, Mansfield NJ (2014) A survey of expert opinion on the effects of occupational exposures to trunk rotation and whole-body vibration. Ergonomics 57(4):563–574. https://doi.org/10.1080/00140139.2014.887785

Article  Google Scholar 

Nakamura H, Ohsu W, Nagase H, Okazawa T, Yoshida M, Okada A (1996) Uterine circulatory dysfunction induced by whole-body vibration and its endocrine pathogenesis in the pregnant rat. Eur J Appl Physiol Occup Physiol 72:292–296

Nelson JS, Grande TC, Wilson MVH (2016) Fishes of the World, 5th edn. John Wiley & Sons, Hoboken, p p752

Book  Google Scholar 

Ng L-J, Wheatley S, Muscat GEO, Conway-Campbell J, Bowles J, Wright E, Bell DM, tam PPL, Cheah KSE, Koopman P. (1997) Sox9 binds DNA, activates transcription, and co-expresses with Type II Collagen during chondrogenesis in the mouse. Dev Biol 183(1):108–121. https://doi.org/10.1006/dbio.1996.8487

CAS  Article  Google Scholar 

Ofer L, Dean MN, Zaslansky P, Kult S, Shwartz Y, Zaretsky J, Griess-Fishheimer S, Monsonego-Ornan E, Zelzer E, Shahar R (2019) A novel nonosteocytic regulatory mechanism of bone modeling. PLoS Biol 17(2):e3000140. https://doi.org/10.1371/journal.pbio.3000140

Article  Google Scholar 

Pré, D. Ceccarelli, G., Gastaldi, G (2011) The differentiation of human adipose-derived stem cells (hASCs) into osteoblasts is promoted by low amplitude, high frequency vibration treatment. Bone. 49:12: 295–303. https://doi.org/10.1098/rsif.2011.0211

Pogoda HM,  Riedl-Quinkertz I, Löhr H, Waxman JS, Dale RM, Topczewski J, Schulte-Merker S, Hammerschmidt M (2018) Direct activation of chordoblasts by retinoic acid is required for segmented centra mineralization during zebrafish spine development. Development 8;145(9):dev159418. https://doi.org/10.1242/dev.159418

Schultze H-P, Arratia G (1986) Reevaluation of the caudal skeleton of actinopterygian fishes. I. Lepisosteus and Amia. J Morphol 190:215–241. https://doi.org/10.1002/jmor.1051900206

Article  PubMed  Google Scholar 

Schultze H-P, Arratia G (1989) The composition of the caudal skeleton of teleosts (Actinopterygii:Osteichthyes). Zool J Linn Soc 97(3):189–231. https://doi.org/10.1111/j.1096-3642.1989.tb00547.x

Seeman E, Delmas PD (2006) Bone Quality-The Material and Structural Basis of Bone Strength and Fragility. N Engl J Med 354:2250–2261. https://doi.org/10.1007/s00774-007-0793-5

CAS  Article  Google Scholar 

Spoorendonk KM, Peterson-Maduro J, Renn J, Trowe T, Kranenbarg S, Winkler C, Schulte-Merker S (2008) Retinoic acid and Cyp26b1 are critical regulators of osteogenesis in the axial skeleton. Development 135(22):3765–3774. https://doi.org/10.1242/dev.024034

CAS  Article  PubMed  Google Scholar 

Thisse C, Thisse B (2008) High-resolution in situ hybridization to whole-mount zebrafish. Nat Protoc 3:59–69. https://doi.org/10.1038/nprot.2007.514

CAS  Article  Google Scholar 

Swartz ME, Sheehan-Rooney K, Dixon MJ, Eberhart JK (2011) Examination of a palatogenic gene program in zebrafish. Dev Dyn 240(9):2204–2220. https://doi.org/10.1002/dvdy.22713

CAS  Article  Google Scholar 

Tirkkonen, L., Halonen H, Hyttinen J. et al. 2011. The effects of vibration loading on adipose stem cell number, viability and differentiation towards bone-forming cells. J R Soc Interface. 8(1):736–1747. https://doi.org/10.1098/rsif.2011.0211

Vandenberg LN, Stevenson C, Levin M (2012) Low frequency vibrations induce malformations in two aquatic species in a frequency-, waveform-, and direction-specific manner. PLoS ONE 7(12):e51473. https://doi.org/10.1371/journal.pone.0051473

CAS  Article  Google Scholar 

Verreijdt L, Debiais-Thibaud M, Borday-Birraux V, Van der Heyden C, Sire JY, Huysseune A (2006) Expression of the dlx gene family during formation of the cranial bones in the zebrafish (Danio rerio): Differential involvement in the visceral skeleton and braincase. Dev Dyn 235(5):1371–1389. https://doi.org/10.1002/dvdy.20734

CAS  Article  Google Scholar 

Wiley EO, Fuiten AM, Doosey MH, Lohman BK, Merkes C, Azuma M (2015) The Caudal Skeleton of the Zebrafish, Danio rerio, from a Phylogenetic Perspective: A Polyural Interpretation of Homologous Structures. Copeia 103(4):740–750. https://doi.org/10.1643/CG-14-105

Article  PubMed  PubMed Central  Google Scholar 

Wise SB, Stock DW (2006) Conservation and divergence of Bmp2a, Bmp2b, and Bmp4 expression patterns within and between dentitions of teleost fishes. Evol Dev 8(6):511–523. https://doi.org/10.1111/j.1525-142X.2006.00124.x

CAS  Article  Google Scholar 

Yan YL, Miller CT, Nissen RM, Singer A, Liu D, Kirn A, Draper B, Willoughby J, Morcos PA, Amsterdam A, Chung B-C, Westerfield M, Haffter P, Hopkins N, Kimmel C, Postlethwait JH (2002) A zebrafish sox9 gene required for cartilage morphogenesis. Development 129(21):5065–5079. https://doi.org/10.1242/dev.129.21.5065

CAS  Article  Google Scholar 

Yan YL, Willoughby J, Liu D, Crump JG, Wilson C, Miller CT, Singer A, Kimmel C, Westerfield M, Postlethwait JH (2005) A pair of Sox: distinct and overlapping functions of zebrafish sox9 co-orthologs in craniofacial and pectoral fin development. Development 132(5):1069–1083. https://doi.org/10.1242/dev.01674

CAS  Article  PubMed  Google Scholar 

Zinck NW, Jeradi S, Franz-Odendaal TA (2021) Elucidating the early signaling cues involved in zebrafish chondrogenesis and cartilage morphology. J Exp Zool B Mol Dev Evol 336(1):18–31. https://doi.org/10.1002/jez.b.23012

CAS  Article  PubMed  Google Scholar 

Zinck N, Franz-Odendaal TA (2021) Accurate whole-mount bone and cartilage staining requires acid-free conditions. Anat Rec 304(5):958–960. https://doi.org/10.1002/ar.24526

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif