The impacts of oxygen and pentoxifylline in hypoxic condition

1. Nunez, TC, Cotton, BA. Transfusion therapy in hemorrhage shock. Curr Opin Crit Care 2009; 15(6): 536–541.
Google Scholar | Crossref | Medline2. Fülöp, A, Turóczi, Z, Garbaisz, D, et al. Experimental models of hemorrhagic shock: a review. Eur Surg Res 2013; 50(2): 57–70.
Google Scholar | Crossref | Medline3. Constantini, TW, Deree, J, Peterson, CY, et al. Pentoxifylline modulates p47 phox activation and downregulates neutrophil oxidative burst through PKA-dependent and –independent mechanisms. Immunopharmacol Immunotoxicol 2010; 32(1): 82–91.
Google Scholar | Crossref | Medline4. Gutierrez, G, Reines, HD, Wulf-Gutierrez, ME. Clinical review. Hemorrhagic shock. Crit Care 2004; 8(5): 373–381.
Google Scholar | Crossref | Medline | ISI5. Vedder, NB, Winn, RK, Sharar, SR, et al. Beta 2-integrins in neutrophil adhesion and their role in ischemia-reperfusion and trauma. In: Siess, WLR, Lorenz, R, Weber, PC (eds) Adhesion molecules and cell signaling: biology and clinical applications. Frankfurt, Germany: Raven Press, 1995, pp. 127–140.
Google Scholar6. Saito, M, Inoue, S, Yamashita, K, et al. IL-15 improves aging-induced persistent T cell exhaustion in mouse models of repeated sepsis. Shock 2020; 53(2): 228–235.
Google Scholar | Crossref | Medline7. Prescott, HC, Osterholzer, JJ, Langa, KM, et al. Late mortality after sepsis: propensity matched cohort study. BMJ 2016; 353: i2375.
Google Scholar | Crossref | Medline8. Bone, RC, Grodzin, CJ, Balk, RA. Sepsis: a new hypothesis for pathogenesis of the disease process. Chest 2009; 112(1): 235–243.
Google Scholar | Crossref9. Boomer, JS, To, K, Chang, KC, et al. Immunosppuression in patients who die of sepsis and multiple organ failure. JAMA 2011; 306(23): 2594–2605.
Google Scholar | Crossref | Medline | ISI10. Cho, YD, Choi, SH, Yoon, YH, et al. The effect of oxygen and treatments in hypoxic conditions in SH-SY5Y cells. Shock 2018; 50(4): 449–454.
Google Scholar | Crossref | Medline11. Mosser, D, Edwards, J. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008; 8(12): 958–969.
Google Scholar | Crossref | Medline | ISI12. Munoz, C, Carlet, J, Fitting, C, et al. Dysregulation of in vitro cytokine production by monocytes during sepsis. J Clin Invest 1991; 88(5): 1747–1754.
Google Scholar | Crossref | Medline | ISI13. Yoon, YH, Choi, SH, Hong, YS, et al. Effect of hypertonic saline and macrophage migration inhibitory factor in restoration of T cell dysfunction. J Korean Surg Soc 2011; 81(4): 229–234.
Google Scholar | Crossref | Medline14. Junger, WG, Hoyt, DB, Hamreus, M, et al. Hypertonic saline activates protein tyrosine kinases and mitogen-activated protein kinase p38 in T-cells. J Trauma 1997; 42(3): 437–445.
Google Scholar | Crossref | Medline15. Phipps, RP, Stein, SH, Roper, RL. A new view of prostaglandin E regulation of the immune response. Immunol Today 1991; 12(10): 349–352.
Google Scholar | Crossref | Medline16. Yao, C, Hirata, T, Soontrapa, K, et al. Prostaglandin E2 promotes Th1 differentiation via synergistic amplification of IL-12 signaling by cAMP and PI3-kinase. Nat Commun 2013; 4: 1685.
Google Scholar | Crossref | Medline17. Titheradge, MA . Nitric oxide inseptic shock. Biochim Biophys Acta 1999; 1411(2–3): 437–455.
Google Scholar | Crossref | Medline18. Borutaite, V, Moncada, S, Brown, GC. Nitric oxide from inducible nitric oxide synthase sensitizes the inflamed aorta to hypoxic damage via respiratory inhibition. Shock 2005; 23(4): 319–323.
Google Scholar | Crossref | Medline19. Chen, IC, Lin, YT, Huang, JS, et al. Decreased ambient oxygen tension alters the expression of endothelin-1, iNOS and cGMP in rat alveolar macrophages. Int J Med Sci 2019; 16(3): 443–449.
Google Scholar | Crossref | Medline20. Hubbi, ME, Semenza, GL. Regulation of cell proliferation by hypoxa-inducible factors. Am J Physiol Cell Phys 2015; 309: C775–C782.
Google Scholar | Crossref | Medline21. Gaber, T, Tran, CL, Schellmann, S, et al. Pathophysiological hypoxia affects the redox state and IL-2 signalling of human CD4+ T cells and concomitantly impairs survival and proliferation. Eur J Immunol 2013; 43(6): 1588–1597.
Google Scholar | Crossref | Medline22. Kündig, TM, Scorle, H, Bachmann, MF, et al. Immune response in interleukin-2-deficient mice. Science 1993; 262(5136): 1059–1061.
Google Scholar | Crossref | Medline23. Scorle, H, Holtschke, T, Hünig, T, et al. Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting. Nature 1991; 352(6336): 621–624.
Google Scholar | Crossref | Medline24. Frauwirth, KA, Thompson, CB. Regulation of T lymphocyte metabolism. J Immunol 2004; 172(8): 4661–4665.
Google Scholar | Crossref | Medline | ISI25. Wang, J, Huang, M, Lee, P, et al. Interleukin-8 inhibits non-small cell lung cancer proliferation: a possible role for regulation of tumor growth by autocrine and paracrine pathways. J Interferon Cytokine Res 1996; 16(1): 53–60.
Google Scholar | Crossref | Medline26. Rotondo, R, Barisione, G, Mastracci, L, et al. IL-8 induces exocytosis of arginase 1 by neutrophil polymorphonuclears in nonsmall cell lung cancer. Int J Cancer 2009; 125(4): 887–893.
Google Scholar | Crossref | Medline27. Calandra, T, Bucala, R. Macrophage migration inhibitory factor (MIF): a glucocorticoid counter-regulator within the immune system. Crit Rev Immunol 2017; 37: 359–370.
Google Scholar | Crossref | Medline28. Coccia, MT, Waxman, K, Soliman, MH, et al. Pentoxifylline improves survival following hemorrhagic shock. Crit Care Med 1989; 17(1): 36–38.
Google Scholar | Crossref | Medline29. Rizoli, SB, Kapus, A, Fan, J, et al. Immunomodulatory effects of hypertonic resuscitation on the development of lung inflammation following hemorrhagic shock. J Immunol. 1998; 161(11): 6288–6296.
Google Scholar | Medline | ISI

留言 (0)

沒有登入
gif