Functional Prediction of Biological Profile During Eutrophication in Marine Environment

1. Teeling, H, Fuchs, BM, Becher, D, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science. 2012;336:608–611. doi:10.1126/science.1218344.
Google Scholar | Crossref | Medline2. Lagorce, A, Fourçans, AA, Dutertre, M, Bouyssiere, B, Zivanovic, Y, Confalonieri, F. Genome-wide transcriptional response of the archaeon Thermococcus gammatolerans to Cadmium. PLoS ONE. 2012;7:e41935. doi:10.1371/journal.pone.0041935.
Google Scholar | Crossref | Medline3. Cooper, MB, Smith, AG. Exploring mutualistic interactions between microalgae and bacteria in the omics age. Curr Opin Plant Biol. 2015;26:147–153. doi:10.1016/j.pbi.2015.07.003.
Google Scholar | Crossref | Medline4. Fuhrman, JA, Steele, JA, Hewson, I, et al. A latitudinal diversity gradient in planktonic marine bacteria. Proc Natl Acad Sci USA 2008;105:7774–7778. doi:10.1073/pnas.0803070105.
Google Scholar | Crossref | Medline5. Huang, Z, Liu, F, Luo, P, et al. Pilot-scale constructed wetlands for swine wastewater treatment: microbial community analysis in bacterioplankton and epiphyton and options for resource recovery. J Water Process Eng 2020;37:101466. doi:10.1016/j.jwpe.2020.101466.
Google Scholar | Crossref6. Sbaoui, Y, Bennis, F, Chegdani, F. SARS-CoV-2 as enteric virus in wastewater: which risk on the environment and human behavior. Microbiol Insights. 2021;14:1–9.
Google Scholar | SAGE Journals7. Pringault, O, Bouvy, M, Carre, C, et al. Impacts of chemical contamination on bacterio-phytoplankton coupling. Chemosphere. 2020;257:127165. doi:10.1016/j.chemosphere.2020.127165.
Google Scholar | Crossref | Medline8. Xuan, L-X, Dai, W-F, Yu, W-N, Zhou, S-M, Ou, C-R, Xiong, J-B. [Effects of Organic Pollutants on the Bacterioplankton Community in Hangzhou Bay]. Huan Jing Ke Xue Huanjing Kexue. 2018;39:3640–3648. doi:10.13227/j.hjkx.201712186.
Google Scholar | Crossref | Medline9. Malone, TC, Newton, A. The globalization of cultural eutrophication in the coastal ocean: causes and consequences. Front Mar Sci. 2020;7:670. doi:10.3389/fmars.2020.00670.
Google Scholar | Crossref10. Gupta, A, Gupta, R, Singh, RL. Microbes and environment. In Singh, R , eds. Principles and Applications of Environmental Biotechnology for a Sustainable Future. Singapore: Springer; 2016:43–84. doi:10.1007/978-981-10-1866-4_3.
Google Scholar | Crossref11. Jessen, C, Bednarz, VN, Rix, L, Teichberg, M, Wild, C. Marine eutrophication. In Armon, RH, Hänninen, O, eds. Environmental Indicators. Dordrecht, The Netherlands: Springer; 2015:177–203. doi:10.1007/978-94-017-9499-2_11.
Google Scholar | Crossref12. Selman, M, Greenhalgh, S. Eutrophication: sources and drivers of nutrient pollution. Renew Resour J. 2010;26:19–26.
Google Scholar13. Grossart, GHP . Ecological consequences of bacterioplankton lifestyles: changes in concepts are needed. Environ Microbiol Rep. 2010;2:706–714. doi:10.1111/j.1758-2229.2010.00179.x.
Google Scholar | Crossref | Medline14. Lindh, MV, Pinhassi, J. Sensitivity of bacterioplankton to environmental disturbance: a review of Baltic sea field studies and experiments. Front Mar Sci. 2018;5:361. doi:10.3389/fmars.2018.00361.
Google Scholar | Crossref15. Fang, FC, Frawley, ER, Tapscott, T, Vazquez-Torres, A. Bacterial stress responses during host infection. Cell Host Microbe. 2016;20:133–143. doi:10.1016/j.chom.2016.07.009.
Google Scholar | Crossref | Medline16. Wałecka, EE, Molenda, J, Bania, J. The impact of environmental stress on Listeria monocytogenes virulence. Pol J Vet Sci. 2009;12:575–579.
Google Scholar | Medline17. NicAogáin, K, O’Byrne, CP. The role of stress and stress adaptations in determining the fate of the bacterial pathogen Listeria monocytogenes in the food chain. Front Microbiol. 2016;7:1865. doi:10.3389/fmicb.2016.01865.
Google Scholar | Crossref | Medline18. Lauffenburger, DA . Cell signaling pathways as control modules: complexity for simplicity? Proc Natl Acad Sci USA. 2000;97:5031–5033.
Google Scholar | Crossref | Medline19. Safari-Alighiarloo, N, Taghizadeh, M, Rezaei-Tavirani, M, Goliaei, B, Peyvandi, AAAA. Protein-protein interaction networks (PPI) and complex diseases. Gastroenterol Hepatol Bed Bench. 2014;7:17–31.
Google Scholar | Medline20. De Las Rivas, J, Fontanillo, C. Protein–protein interactions essentials: key concepts to building and analyzing interactome networks. Plos Comput Biol. 2010;6:e1000807. doi:10.1371/journal.pcbi.1000807.
Google Scholar | Crossref | Medline21. Shannon, P, Markiel, A, Ozier, O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi:10.1101/gr.1239303.
Google Scholar | Crossref | Medline | ISI22. Saito, R, Smoot, ME, Ono, K, et al. A travel guide to Cytoscape plugins. Nat Methods. 2012;9:1069–1076. doi:10.1038/nmeth.2212.
Google Scholar | Crossref | Medline | ISI23. Smoot, ME, Ono, K, Ruscheinski, J, Wang, P-L, Ideker, T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27:3. doi:10.1093/bioinformatics/btq675.
Google Scholar | Crossref24. Arabidopsis Interactome Mapping Consortium . Evidence for network evolution in an Arabidopsis interactome map. Science. 2011;333:601–607. doi:10.1126/science.1203877.
Google Scholar | Crossref | Medline | ISI25. Nagar, SD, Aggarwal, B, Joon, S, Bhatnagar, R, Bhatnagar, S. A network biology approach to decipher stress response in bacteria using Escherichia coli as a model. OMICS. 2016;20:310–324. doi:10.1089/omi.2016.0028.
Google Scholar | Crossref | Medline26. Vidal, M . Interactome modeling. FEBS Lett. 2005;579:1834–1838. doi:10.1016/j.febslet.2005.02.030.
Google Scholar | Crossref | Medline | ISI27. N. R. C. (US) C. on M. M. Biology . MARINE ORGANISMS AS MODEL SYSTEMS. National Academies Press. https://www.ncbi.nlm.nih.gov/books/NBK231218/. Updated 1994. Accessed September 5, 2021.
Google Scholar28. Nouadi, B, Sbaoui, Y, El Messal, MM, Bennis, F, Chegdani, F. Integrative analysis of the genes induced by the intestine microbiota of infant born to term and breastfed. Bioinform Biol Insights. 2020;14:1–14. doi:10.1177/1177932220906168.
Google Scholar | SAGE Journals29. Wang, Y, Wang, S, Wu, C, et al. Oral microbiome alterations associated with early childhood caries highlight the importance of carbohydrate metabolic activities. mSystems 2019;4:e00450–19. doi:10.1128/mSystems.00450-19.
Google Scholar | Crossref30. Pace, RM, Chu, DM, Prince, AL, Ma, J, Seferovic, MD, Aagaard, KM. Complex species and strain ecology of the vaginal microbiome from pregnancy to postpartum and association with preterm birth. Med. 2021;2:1027–1049.e7. doi:10.1016/j.medj.2021.06.001.
Google Scholar | Crossref31. Geng, H, Tran-Gyamfi, MB, Lane, TW, Sale, KL, Yu, ET. Changes in the structure of the microbial community associated with Nannochloropsis salina following treatments with antibiotics and bioactive compounds. Front Microbiol. 2016;7:1155. doi:10.3389/fmicb.2016.01155.
Google Scholar | Crossref | Medline32. Milici, M, Deng, Z-L, Tomasch, J, et al. Co-occurrence analysis of microbial taxa in the Atlantic ocean reveals high connectivity in the free-living bacterioplankton. Front Microbiol. 2016;7:649. doi:10.3389/fmicb.2016.00649.
Google Scholar | Crossref | Medline33. Hawley, AK, Brewer, HM, Norbeck, AD, Paša-Tolić, L, Hallam, SJ. Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes. Proc Natl Acad Sci USA. 2014;111:11395–11400. doi:10.1073/pnas.1322132111.
Google Scholar | Crossref | Medline34. Cárdenas, A, Neave, MJ, Haroon, MF, et al. Excess labile carbon promotes the expression of virulence factors in coral reef bacterioplankton. ISME J. 2018;12:59–76. doi:10.1038/ismej.2017.142.
Google Scholar | Crossref | Medline35. Vijayendran, C, Barsch, A, Friehs, K, Niehaus, K, Becker, A, Flaschel, E. Perceiving molecular evolution processes in Escherichia coli by comprehensive metabolite and gene expression profiling. Genome Biol. 2008;9:R72. doi:10.1186/gb-2008-9-4-r72.
Google Scholar | Crossref | Medline36. McGrath, KC, Mondav, R, Sintrajaya, R, Slattery, B, Schmidt, S, Schenk, PM. Development of an environmental functional gene microarray for soil microbial communities. Appl Environ Microbiol. 2010;76:7161–7170. doi:10.1128/AEM.03108-09.
Google Scholar | Crossref | Medline37. Amnebrink, D . Transcriptomic profiling of marine bacteria between development and senescence phases of a phytoplankton bloom. https://www.semanticscholar.org/paper/Transcriptomic-profiling-of-marine-bacteria-betweenAmnebrink/3bf8faefbc2a8db708fa18f54254c272a2774eb0. Updated 2018. Accessed November 22, 2020.
Google Scholar38. Li, Y, Zheng, L, Zhang, Y, Liu, H, Jing, H. Comparative metagenomics study reveals pollution induced changes of microbial genes in mangrove sediments. Sci Rep. 2019;9:1. doi:10.1038/s41598-019-42260-4.
Google Scholar | Crossref | Medline39. Shimizu, K . Metabolic regulation of a bacterial cell system with emphasis on Escherichia coli metabolism. ISRN Biochem. 2013;2013:645983. doi:10.1155/2013/645983.
Google Scholar | Crossref | Medline40. Tiwari, G, Duraivadivel, P, Sharma, S. 1-Aminocyclopropane-1-carboxylic acid deaminase producing beneficial rhizobacteria ameliorate the biomass characters of Panicum maximum Jacq. by mitigating drought and salt stress. Sci Rep. 2018;8:17513. doi:10.1038/s41598-018-35565-3.
Google Scholar | Crossref | Medline41. Yaku, K, Okabe, K, Gulshan, M, Takatsu, K, Okamoto, H, Nakagawa, T. Metabolism and biochemical properties of nicotinamide adenine dinucleotide (NAD) analogs, nicotinamide guanine dinucleotide (NGD) and nicotinamide hypoxanthine dinucleotide (NHD). Sci Rep. 2019;9:13102. doi:10.1038/s41598-019-49547-6.
Google Scholar | Crossref | Medline42. Groth, B, Venkatakrishnan, P, Lin, S-J. NAD+ metabolism, metabolic stress, and infection. Front Mol Biosci. 2021;8:686412. doi:10.3389/fmolb.2021.686412.
Google Scholar | Crossref | Medline43. Stokes, JM, Lopatkin, AJ, Lobritz, MA, Collins, JJ. Bacterial metabolism and antibiotic efficacy. Cell Metab. 2019;30:251–259. doi:10.1016/j.cmet.2019.06.009.
Google Scholar | Crossref | Medline44. El Zahed, SSSS, Kumar, G, Tong, M, Brown, ED. Nutrient stress small-molecule screening platform for Escherichia coli. Methods Mol Biol. 2018;1787:1–18. doi:10.1007/978-1-4939-7847-2_1.
Google Scholar | Crossref | Medline45. Richardson, AR, Somerville Sonenshein, GAAL. Regulating the intersection of metabolism and pathogenesis in Gram-positive bacteria. Microbiol Spectr. 2015;3:11. doi:10.1128/microbiolspec.MBP-0004-2014.
Google Scholar | Crossref46. Foster, JS, Apicella, MA, McFall-Ngai, MJ. Vibrio fischeri lipopolysaccharide induces developmental apoptosis, but not complete morphogenesis, of the Euprymna scolopes symbiotic light organ. Dev Biol. 2000;226:242–254. doi:10.1006/dbio.2000.9868.
Google Scholar | Crossref | Medline47. Labreuche, Y, Roux, FL, Henry, J, et al. Vibrio aestuarianus zinc metalloprotease causes lethality in the Pacific oyster Crassostrea gigas and impairs the host cellular immune defenses. Fish Shellfish Immunol 2010;29:753–758. doi:10.1016/j.fsi.2010.07.007.
Google Scholar | Crossref | Medline48. Kennelly, PJ, Potts, M. Fan

留言 (0)

沒有登入
gif