1. Zhang, L, Hu, J, Athanasiou, KA. The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng 2009; 37: 1–57. DOI:
10.1615/CritRevBiomedEng.v37.i1-2.10.
Google Scholar |
Crossref |
Medline2. Han, L, Grodzinsky, AJ, Ortiz, C. Nanomechanics of the cartilage extracellular matrix. Annu Rev Mater Res 2011; 41: 133–168. DOI:
10.1146/annurev-matsci-062910-100431.
Google Scholar |
Crossref |
Medline |
ISI3. Kazemnejad, S, Khanmohammadi, M, Baheiraei, N, et al. Current state of cartilage tissue engineering using nanofibrous scaffolds and stem cells. Avicenna J Med Biotechnol 2017; 9.
Google Scholar |
Medline4. Jun, I, Han, HS, Edwards, J, et al. Electrospun fibrous scaffolds for tissue engineering: viewpoints on architecture and fabrication. Int J Mol Sci 2018; 19: 745. DOI:
10.3390/ijms19030745.
Google Scholar |
Crossref5. Sensini, A, Gotti, C, Belcari, J, et al. Morphologically bioinspired hierarchical nylon 6,6 electrospun assembly recreating the structure and performance of tendons and ligaments. Med Eng Phys 2019; 71: 79–90. DOI:
10.1016/j.medengphy.2019.06.019.
Google Scholar |
Crossref |
Medline6. Girão, AF, Semitela, Â, Ramalho, G, et al. Mimicking nature: fabrication of 3D anisotropic electrospun polycaprolactone scaffolds for cartilage tissue engineering applications. Compos B Eng 2018; 154: 99–107. DOI:
10.1016/j.compositesb.2018.08.001.
Google Scholar |
Crossref7. Keirouz, A, Fortunato, G, Zhang, M, et al. Nozzle-free electrospinning of Polyvinylpyrrolidone/Poly(glycerol sebacate) fibrous scaffolds for skin tissue engineering applications. Med Eng Phys 2019; 71: 56–67. DOI:
10.1016/j.medengphy.2019.06.009.
Google Scholar |
Crossref |
Medline8. Wu, J, Hong, Y. Enhancing cell infiltration of electrospun fibrous scaffolds in tissue regeneration. Bioact Mater 2016; 1: 56–64. DOI:
10.1016/j.bioactmat.2016.07.001.
Google Scholar |
Crossref |
Medline9. Ameer, JM, PR, AK, Kasoju, N. Strategies to tune electrospun scaffold porosity for effective cell response in tissue engineering. J Funct Biomater 2019; 10: 30. DOI:
10.3390/jfb10030030.
Google Scholar |
Crossref10. Thevenot, P, Nair, A, Dey, J, et al. Method to analyze three-dimensional cell distribution and infiltration in degradable scaffolds. Tissue Eng C Methods 2008; 14: 319–331. DOI:
10.1089/ten.tec.2008.0221.
Google Scholar |
Crossref |
Medline11. Issa, RI, Engebretson, B, Rustom, L, et al. The effect of cell seeding density on the cellular and mechanical properties of a mechanostimulated tissue-engineered tendon. Tissue Eng A 2011; 17: 1479–1487. DOI:
10.1089/ten.tea.2010.0484.
Google Scholar |
Crossref |
Medline |
ISI12. Ekaputra, AK, Prestwich, GD, Cool, SM, et al. Combining electrospun scaffolds with electrosprayed hydrogels leads to three-dimensional cellularization of hybrid constructs. Biomacromolecules 2008; 9: 2097–2103. DOI:
10.1021/bm800565u.
Google Scholar |
Crossref |
Medline |
ISI13. Poncelet, D, de Vos, P, Suter, N, et al. Bio-electrospraying and cell electrospinning: progress and opportunities for basic biology and clinical sciences. Adv Healthc Mater 2012; 1: 27–34. DOI:
10.1002/adhm.201100001.
Google Scholar |
Crossref |
Medline14. van Aalst, JA, Reed, CR, Han, L, et al. Cellular incorporation into electrospun nanofibers. Ann Plast Surg 2008; 60: 577–583. DOI:
10.1097/SAP.0b013e318168db3e.
Google Scholar |
Crossref |
Medline15. Braghirolli, DI, Zamboni, F, Acasigua, GAX, et al. Association of electrospinning with electrospraying: a strategy to produce 3D scaffolds with incorporated stem cells for use in tissue engineering. Int J Nanomedicine 2015; 10: 5159–5170. DOI:
10.2147/IJN.S84312.
Google Scholar |
Crossref |
Medline16. Canbolat, MF, Tang, C, Bernacki, SH, et al. Mammalian cell viability in electrospun composite nanofiber structures. Macromol Biosci 2011; 11: 1346–1356. DOI:
10.1002/mabi.201100108.
Google Scholar |
Crossref |
Medline17. Ehler, E, Jayasinghe, SN. Cell electrospinning cardiac patches for tissue engineering the heart. Analyst 2014; 139: 4449–4452. DOI:
10.1039/c4an00766b.
Google Scholar |
Crossref |
Medline18. Stankus, JJ, Soletti, L, Fujimoto, K, et al. Fabrication of cell microintegrated blood vessel constructs through electrohydrodynamic atomization. Biomaterials 2007; 28: 2738–2746. DOI:
10.1016/j.biomaterials.2007.02.012.
Google Scholar |
Crossref |
Medline |
ISI19. Paletta, JRJ, Mack, F, Schenderlein, H, et al. Incorporation of osteoblasts (MG63) into 3D nanofibre matrices by simultaneous electrospinning and spraying in bone tissue engineering. Eur Cells Mater 2011; 21: 384–395. DOI:
10.22203/eCM.v021a29.
Google Scholar |
Crossref |
Medline20. Weidenbacher, L, Abrishamkar, A, Rottmar, M, et al. Electrospraying of microfluidic encapsulated cells for the fabrication of cell-laden electrospun hybrid tissue constructs. Acta Biomater 2017; 64: 137–147. DOI:
10.1016/j.actbio.2017.10.012.
Google Scholar |
Crossref |
Medline21. Hindle, P, Hall, AC, Biant, LC. Viability of chondrocytes seeded onto a collagen I/III membrane for matrix-induced autologous chondrocyte implantation. J Orthop Res 2014; 32: 1495–1502. DOI:
10.1002/jor.22701.
Google Scholar |
Crossref |
Medline |
ISI22. Schneider, T, Kohl, B, Sauter, T, et al. Influence of fiber orientation in electrospun polymer scaffolds on viability, adhesion and differentiation of articular chondrocytes. Clin Hemorheol Microcirc 2012; 52: 325–336. DOI:
10.3233/CH-2012-1608.
Google Scholar |
Crossref |
Medline23. Nam, J, Huang, Y, Agarwal, S, et al. Materials selection and residual solvent retention in biodegradable electrospun fibers. J Appl Polym Sci 2008; 107: 1547–1554. DOI:
10.1002/app.27063.
Google Scholar |
Crossref24. Stankus, JJ, Guan, J, Fujimoto, K, et al. Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix. Biomaterials 2006; 27: 735–744. DOI:
10.1016/j.biomaterials.2005.06.020.
Google Scholar |
Crossref |
Medline |
ISI25. Chai, Q, Jiao, Y, Yu, X. Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels 2017; 3: 6. DOI:
10.3390/gels3010006.
Google Scholar |
Crossref26. Shi, Z, Gao, X, Ullah, MW, et al. Electroconductive natural polymer-based hydrogels. Biomaterials 2016; 111: 40–54. DOI:
10.1016/j.biomaterials.2016.09.020.
Google Scholar |
Crossref |
Medline27. Semitela, Â, Girão, AF, Fernandes, C, et al. Electrospinning of bioactive polycaprolactone-gelatin nanofibres with increased pore size for cartilage tissue engineering applications. J Biomater Appl 2020; 35(4–5): 471–484. DOI:
10.1177/0885328220940194.
Google Scholar |
SAGE Journals |
ISI28. Zheng, R, Duan, H, Xue, J, et al. The influence of Gelatin/PCL ratio and 3-D construct shape of electrospun membranes on cartilage regeneration. Biomaterials 2014; 35: 152–164. DOI:
10.1016/j.biomaterials.2013.09.082.
Google Scholar |
Crossref |
Medline29. Zhang, Y, Ouyang, H, Chwee, TL, et al. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biomater 2005; 72: 156–165. DOI:
10.1002/jbm.b.30128.
Google Scholar |
Crossref |
Medline |
ISI30. Girão, AF, Semitela, Â, Pereira, AL, et al. Microfabrication of a biomimetic arcade-like electrospun scaffold for cartilage tissue engineering applications. J Mater Sci Mater Med 2020; 31: 69. DOI:
10.1007/s10856-020-06407-4.
Google Scholar |
Crossref |
Medline31. Semitela, Â, Girão, AF, Fernandes, C, et al. Boosting in vitro cartilage tissue engineering through the fabrication of polycaprolactone-gelatin 3D scaffolds with specific depth-dependent fiber alignments and mechanical stimulation. J Mech Behav Biomed Mater 2021; 117: 104373. DOI:
10.1016/j.jmbbm.2021.104373.
Google Scholar |
Crossref |
Medline32. O’Brien, J, Wilson, I, Orton, T, et al. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Bochemistry 2000; 267: 5421–5426, DOI:
10.1046/j.1432-1327.2000.01606.x.
Google Scholar |
Crossref |
Medline33. Duthen, S, Rochat, C, Kleiber, D, et al. Physicochemical characterization and study of molar mass of industrial gelatins by AsFlFFF-UV/MALS and chemometric approach. PLoS One 2018; 13: e0203595. DOI:
10.1371/journal.pone.0203595.
Google Scholar |
Crossref |
Medline34. Ahmed, J . Rheological properties of gelatin and advances in measurement. In: Advances in Food Rheology and Its Applications. Elsevier, 2017, pp. 377–404. DOI:
10.1016/B978-0-08-100431-9.00015-2.
Google Scholar |
Crossref35. Fu, S, Thacker, A, Sperger, DM, et al. Rheological evaluation of inter-grade and inter-batch variability of Sodium Alginate. AAPS PharmSciTech 2010; 11: 1662–1674. DOI:
10.1208/s12249-010-9547-0.
Google Scholar |
Crossref |
Medline36. Devina, N, Eriwati, YK, Santosa, AS. The purity and viscosity of sodium alginate extracted from Sargassum brown seaweed species as a basic ingredient in dental alginate impression material. J Phys Conf Ser 2018; 1073: 052012. DOI:
10.1088/1742-6596/1073/5/052012.
Google Scholar |
Crossref37. Iwaki, YO, Escalona, MH, Briones, JR, et al. Sodium Alginate-based ionic conducting membranes. Mol Cryst Liq Cryst 2012; 554: 221–231. DOI:
10.1080/15421406.2012.634329.
Google Scholar |
Crossref38. Marchal, C, Nadi, M, Tosser, AJ, et al. Dielectric properties of gelatine phantoms used for simulations of biological tissues between 10 and 50 MHz. Int J Hyperth 1989; 5: 725–732. DOI:
10.3109/02656738909140497.
Google Scholar |
Crossref |
Medline |
ISI39. Bu, Y, Xu, HX, Li, X, et al. A conductive sodium alginate and carboxymethyl chitosan hydrogel doped with polypyrrole for peripheral nerve regeneration. RSC Adv 2018; 8: 10806–10817. DOI:
10.1039/C8RA01059E.
Google Scholar |
Crossref40. Kandadai, MA, Raymond, JL, Shaw, GJ. Comparison of electrical conductivities of various brain phantom gels: developing a ‘brain gel model. Mater Sci Eng C Mater Biol Appl 2012; 32: 2664–2667. DOI:
10.1016/j.msec.2012.07.024.
Google Scholar |
Crossref |
Medline41. Kakita, H, Kamishima, H. Some properties of alginate gels derived from algal sodium alginate. J Appl Phycol 2008; 20: 543–549. DOI:
10.1007/s10811-008-9317-5.
Google Scholar |
Crossref42. Patel, JM, Wise, BC, Bonnevie, ED, et al. A systematic review and guide to mechanical testing for articular cartilage tissue engineering. Tissue Eng Part C Methods 2019; 25: 593–608. DOI:
10.1089/ten.tec.2019.0116.
Google Scholar |
Crossref |
Medline43. Huang, AH, Yeger-McKeever, M, Stein, A, et al. Tensile properties of engineered cartilage formed from chondrocyte- and MSC-laden hydrogels. Osteoarthr Cartil 2008; 16: 1074–1082. DOI:
10.1016/j.joca.2008.02.005.
Google Scholar |
Crossref |
Medline |
ISI44. Gratz, KR, Wong, VW, Chen, AC, et al. Biomechanical assessment of tissue retrieved after in vivo cartilage defect repair: tensile modulus of repair tissue and integration with host cartilage. J Biomech 2006; 39: 138–146. DOI:
10.1016/j.jbiomech.2004.10.016.
Google Scholar |
Comments (0)