1. Papp-Wallace, KM, Endimiani, A, Taracila, MA, Bonomo, RA. Carbapenems: past, present, and future. Antimicrob Agents Chemother. 2011;55:4943-4960.
Google Scholar |
Crossref |
Medline |
ISI2. Mohr, JF Update on the efficacy and tolerability of meropenem in the treatment of serious bacterial infections. Clin Infect Dis. 2008;47(suppl 1):S41-S51.
Google Scholar |
Crossref |
Medline3. Grill, MF, Maganti, RK. Neurotoxic effects associated with antibiotic use: management considerations. Br J Clin Pharmacol. 2011;72:381-393.
Google Scholar |
Crossref |
Medline |
ISI4. Chow, KM, Hui, AC, Szeto, CC. Neurotoxicity induced by beta-lactam antibiotics: from bench to bedside. Eur J Clin Microbiol Infect Dis. 2005;24:649-653.
Google Scholar |
Crossref |
Medline |
ISI5. Lamoth, F, Erard, V, Asner, S, Buclin, T, Calandra, T, Marchetti, O. High imipenem blood concentrations associated with toxic encephalopathy in a patient with mild renal dysfunction. Int J Antimicrob Agents. 2009;34:386-388.
Google Scholar |
Crossref |
Medline6. Dobson, R, Giovannoni, G. Multiple sclerosis—a review. Eur J Neurol. 2019;26(1):27-40.
Google Scholar |
Crossref |
Medline7. McGinley, MP, Goldschmidt, CH, Rae-Grant, AD. Diagnosis and treatment of multiple sclerosis. J Am Med Assoc. 2021;325(8):765-779.
Google Scholar |
Crossref8. Jick, S. Increased risk of infections in patients diagnosed with multiple sclerosis (MS): a study in the UK Clinical Practice Research Database (CPRD). Presented at: 34th Congress of the European Committee for Treatment and Research in Multiple Sclerosis October 10-12, 2018.
Google Scholar9. Celius, EG . Infections in patients with multiple sclerosis: implications for disease-modifying therapy. Acta Neurol Scand. 2017;136(suppl 201):34-36.
Google Scholar |
Crossref |
Medline10. Oo, Y, Packham, D, Yau, W, Munckhof, WJ. Ertapenem-associated psychosis and encephalopathy. Intern Med J. 2014;44:817-819.
Google Scholar |
Crossref |
Medline |
ISI11. Sutton, SS, Jumper, M, Cook, S, Edun, B, Wyatt, MD. Ertapenem-induced encephalopathy in a patient with normal renal function. J Investig Med High Impact Case Reports. 2017;5(1):2324709616689376.
Google Scholar |
SAGE Journals |
ISI12. Spina Silva, T, Dal-Prá Ducci, R, Zorzetto, FP, Braatz, VL, de Paola, L, Kowacs, PA. Meropenem-induced myoclonus: a case report. Seizure. 2014;23:912-914.
Google Scholar |
Crossref |
Medline13. Munoz-Gomez, S, Gran, A, Cunha, BA. Meropenem delirium: a previously unrecognized neurologic side effect. J Chemother. 2015;27:120-121.
Google Scholar |
Crossref |
Medline14. Koppel, BS, Hauser, WA, Politis, C, Van Duin, D, Daras, M. Seizures in the critically ill: the role of imipenem. Epilepsia. 2001;42:1590-1593.
Google Scholar |
Crossref |
Medline |
ISI15. Miller, AD, Ball, AM, Bookstaver, PB, Dornblaser, EK, Bennett, CL. Epileptogenic potential of carbapenem agents: mechanism of action, seizure rates, and clinical considerations. Pharmacotherapy. 2011;31:408-423.
Google Scholar |
Crossref |
Medline |
ISI16. Cannon, JP, Lee, TA, Clark, NM, Setlak, P, Grim, SA. The risk of seizures among the carbapenems: a meta-analysis. J Antimicrob Chemother. 2014;69:2043-2055.
Google Scholar |
Crossref |
Medline |
ISI17. Sunagawa, M, Matsumura, H, Sumita, Y, Nouda, H. Structural features resulting in convulsive activity of carbapenem compounds: Effect of C-2 side chain. J Antibiot. 1995;48:408-416.
Google Scholar |
Crossref |
Medline |
ISI18. Fujimoto, M, Munakata, M, Akaike, N. Dual mechanisms of GABAa response inhibition by β-lactam antibiotics in the pyramidal neurones of the rat cerebral cortex. Br J Pharmacol. 1995;116:3014-3020.
Google Scholar |
Crossref |
Medline19. De Sarro, G, Ammendola, D, Nava, F, De Sarro, A. Effects of some excitatory amino acid antagonists on imipenem-induced seizures in DBA/2 mice. Brain Res. 1995;671:131-140.
Google Scholar |
Crossref |
Medline20. Nau, R, Lassek, C, Kinzig-Schippers, M, Thiel, A, Prange, HW, Sorgel, F. Disposition and elimination of meropenem in cerebrospinal fluid of hydrocephalic patients with external ventriculostomy. Antimicrob Agents Chemother. 1998;42:2012-2016.
Google Scholar |
Crossref |
Medline |
ISI21. Nau, R, Sorgel, F, Eiffert, H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin Microbiol Rev. 2010;23:858-883.
Google Scholar |
Crossref |
Medline |
ISI22. Cottagnoud, P, Pfister, M, Cottagnoud, M, Acosta, F, Tauber, MG. Activities of ertapenem, a new long-acting carbapenem, against penicillin-sensitive or -resistant pneumococci in experimental meningitis. Antimicrob Agents Chemother. 2003;47:1943-1947.
Google Scholar |
Crossref |
Medline23. Di Paolo, A, Gori, G, Tascini, C, Danesi, R, Del Tacca, M. Clinical pharmacokinetics of antibacterials in cerebrospinal fluid. Clin Pharmacokinet. 2013;52(7):511-542.
Google Scholar |
Crossref |
Medline24. Blassmann, U, Roehr, AC, Frey, OR, et al. Cerebrospinal fluid penetration of meropenem in neurocritical care patients with proven or suspected ventriculitis: a prospective observational study. Crit Care. 2017;20:343.
Google Scholar |
Crossref25. Merrem (Meropenem) Package Insert. Wilmington, DE: AstraZenca Pharmaceuticals LP; 2006.
Google Scholar26. Invanz (Ertapenem) Package Insert. Whitehouse Station: NJ. Merck & Co, Inc; 2012.
Google Scholar27. Primaxin (Imipenem and Cilastatin) Package Insert. Whitehouse Station: NJ. Merck & Co, Inc; 2016
Google Scholar28. Beumier, M, Casu, GS, Hites, M, et al. Elevated β-lactam concentrations associated with neurological deterioration in ICU septic patients. Minerva Anestesiologica. 2015;81:497-506.
Google Scholar |
Medline29. Imani, S, Buscher, H, Marriott, D, Gentili, S, Sandaradura, I. Too much of a good thing: a retrospective study of β-lactam concentration-toxicity relationships. J Antimicrob Chemother. 2017;72:2891-2897.
Google Scholar |
Crossref |
Medline30. Lau, C, Marriott, D, Gould, M, Andresen, D, Reuter, SE, Penm, J. A retrospective study to determine the cefepime-induced neurotoxicity threshold in hospitalized patients. J Antimicrob Chemother. 2020;75:718-725.
Google Scholar |
Crossref |
Medline31. Schilamser, SE, Cars, O, Norrby, SR. Neurotoxicity of beta-lactam antibiotics: predisposing factors and pathogenesis. J Antimicrob Chemother. 1991;27:405-425.
Google Scholar |
Crossref |
Medline32. Calandra, G, Lydick, E, Carrigan, J, Weiss, L, Guess, H. Factors predisposing to seizures in seriously ill infected patients receiving antibiotics: Experience with imipenem/cilastatin. Am J Med 1988;84:911-918.
Google Scholar |
Crossref |
Medline |
ISI33. Kirk, J, Plumb, J, Mirakhur, M, McQuaid, S. Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood-brain barrier leakage and active demyelination. J Pathol. 2003;201:319-327.
Google Scholar |
Crossref |
Medline |
ISI34. Tofts, PS, Kermode, AG. Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med. 1991;17:357-367.
Google Scholar |
Crossref |
Medline |
ISI35. Shea, YF, Mok, MYM, Cheng, KC, Hon, FKS, Chu, LW. Delayed recovery from ertapenem induced encephalopathy: case-report and a possible mechanism. Int J Clin Pharm. 2013;35:535-537.
Google Scholar |
Crossref |
Medline |
ISI36. Naranjo, CA, Busto, U, Sellers, EM, et al. A method for estimating the probability of adverse drug reactions. Clin Pharmacol Therapeut. 1981;30:239-245.
Google Scholar |
Crossref |
Medline |
ISI37. Alvis, BD, Sobey, CM. Oral baclofen withdrawal resulting in progressive weakness and sedation requiring intensive care admission. Neurohospitalist. 2017;7:39-40.
Google Scholar |
SAGE Journals |
ISI38. Leo, RJ, Baer, D. Delirium associated with baclofen withdrawal: a review of common presentations and management strategies. Psychosomatics. 2005;46:503-507.
Google Scholar |
Crossref |
Medline |
ISI39. Kroin, JS, Bianchi, GD, Penn, RD. Intrathecal baclofen down-regulates GABAB receptors in the rat substantia gelatinosa. J Neurosurg. 1993;79:544-549.
Google Scholar |
Crossref |
Medline |
ISI40. Coffey, RJ, Edgar, TS, Francisco, GE, et al. Abrupt withdrawal from intrathecal baclofen: recognition and management of a potentially life-threatening syndrome. Arch Phys Med Rehabil. 2002;83:735-741.
Google Scholar |
Crossref |
Medline |
ISI41. Nutt, DJ . Pharmacological mechanisms of benzodiazepine withdrawal. J Psychiatr Res. 1990;24(suppl 2):105-110.
Google Scholar |
Crossref |
Medline42. Tietz, EI, Huang, X, Chen, S, Ferencak, WF. Temporal and regional regulation of alpha1, beta2 and beta3, but not alpha2, alpha4, alpha5, alpha6, beta1 or gamma2 GABA(A) receptor subunit messenger RNAs following one-week oral flurazepam administration. Neuroscience 1999;91:327-341.
Google Scholar |
Crossref |
Medline43. Allison, C, Pratt, JA. Neuroadaptive processes in GABAergic and glutamatergic systems in benzodiazepine dependence. Pharmacol Therapeut. 2003;98:171-195.
Google Scholar |
Crossref |
Medline44. Tsuda, M, Chiba, Y, Suzuki, T, Misawa, M. Upregulation of NMDA receptor subunit proteins in the cerebral cortex during diazepam withdrawal. Eur J Pharmacol. 1998;341(2-3):R1-R2.
Google Scholar |
Crossref |
Medline45. Nicholas, R, Young, C, Friede, T. Bladder symptoms in multiple sclerosis: a review of pathophysiology and management. Expet Opin Drug Saf. 2010;9:905-915.
Google Scholar |
Crossref |
Medline
Comments (0)