Establishing a priori and a posteriori predictive models to assess patients’ peak skin dose in interventional cardiology. Part 2: results of the VERIDIC project

1. Alkhouli, M, Alqahtani, F, Kalra, A, et al. Trends in characteristics and outcomes of patients undergoing coronary revascularization in the United States, 2003–2016. JAMA Netw Open 2020;3:e1921326. doi:10.1001/jamanetworkopen.2019.21326
Google Scholar | Crossref2. Faulkner, K, Werduch, A. An estimate of the collective dose to the European population from cardiac X-ray procedures. Br J Radiol 2008;8:1955–1962. doi:10.1259/bjr/74139823
Google Scholar | Crossref3. Togni, M, Balmer, F, Pfiffner, D, et al. Percutaneous coronary interventions in Europe 1992–2001. Eur Heart J 2004;25:1208–1213. doi:10.1016/j.ehj.2004.04.024
Google Scholar | Crossref | Medline | ISI4. Tsapaki, V, Ahmed, NA, AlSuwaidi, JS, et al. Radiation exposure to patients during interventional procedures in 20 countries: initial IAEA project results. AJR Am J Roentgenol 2009;193:559–569. doi:10.2214/AJR.08.2115
Google Scholar | Crossref | Medline | ISI5. Peruzzo Cornetto, A, Aimonetto, S, Pisano, F, et al. The contribution of interventional cardiology procedures to the population radiation dose in a ‘health-care level I’ representative region. Radiat Prot Dosimetry 2016;168:261–270. doi:10.1093/rpd/ncv307
Google Scholar | Crossref | Medline6. Picano, E, Vano, E. The radiation issue in cardiology: the time for action is now. Cardiovasc Ultrasound 2011;9:35. doi:10.1186/1476-7120-9-35
Google Scholar | Crossref7. Sun, Z, AbAziz, A, Yusof, AK. Radiation-induced noncancer risks in interventional cardiology: optimisation of procedures and staff and patient dose reduction. Biomed Res Int 2013;2013:976962. doi:10.1155/2013/976962
Google Scholar | Crossref8. Osei, B, Xu, L, Johnston, A, et al. Retrospective study of patients radiation dose during cardiac catheterization procedures. Br J Radiol 2019;92:20181021. doi:10.1259/bjr.20181021
Google Scholar | Crossref9. Davidsen, C, Bolstad, K, Nygaard, E, et al. Temporal trends in X-Ray exposure during coronary angiography and percutaneous coronary intervention. J Interv Cardiol 2020;2020:9602942. doi:10.1155/2020/9602942
Google Scholar | Crossref10. Koenig, TR, Wolff, D, Mettler, FA, et al. Skin injuries from fluoroscopically guided procedures: part 1, characteristics of radiation injury. AJR Am J Roentgenol 2001;177:3–11. doi:10.2214/ajr.177.1.1770003
Google Scholar | Crossref | Medline | ISI11. Badawy, MK, Clark, T, Carrion, D, et al. Radiation dose optimization in interventional cardiology: a teaching hospital experience. Cardiol Res Prac 2018;2018:6912841. doi:10.1155/2018/6912841
Google Scholar | Crossref12. Stecker, MS, Balter, S, Towbin, RB, et al. Guidelines for patient radiation dose management. J Vasc Interv Radiol 2009;20:S263–S273.
Google Scholar | Crossref | Medline | ISI13. Malchair F, Dabin J, Deleu M, et al. Review of skin dose calculation software in interventional cardiology. Physica Medica 2020(80):75–83.
Google Scholar | Crossref14. Dabin J, Blidéanu V, Ciraj Bjelac O, et al. Accuracy of skin dose mapping in interventional cardiology: Comparison of 10 software products following a common protocol. Phys Med 2021;82:279–294.
Google Scholar | Crossref15. Krajinović M, Dobrić M, Ciraj-Bjelac O. Skin dose mapping in interventional cardiology: a practical solution. Radiat Prot Dosimetry 2020;188(4):508–515.
Google Scholar | Crossref16. Sharma, D, Ramsewak, A, O’Conaire, S, et al. Reducing radiation exposure during transcatheter aortic valve implantation (TAVI). Catheter Cardiovasc Interv 2015;85:1256–1261. doi:10.1002/ccd.25363
Google Scholar | Crossref | Medline17. Fetterly, KA, Lennon, RJ, Bell, MR, et al. Clinical determinants of radiation dose in percutaneous coronary interventional procedures: influence of patient size, procedure complexity, and performing physician. JACC Cardiovasc Interv 2011;4:336–343. doi:10.1016/j.jcin.2010.10.014
Google Scholar | Crossref | Medline18. Chida, K, Saito, H, Otani, H, et al. Relationship between fluoroscopic time, dose-area product, body weight, and maximum radiation skin dose in cardiac interventional procedures. AJR Am J Roentgenol 2006;186:774–778. doi:10.2214/AJR.04.1653
Google Scholar | Crossref | Medline | ISI19. Wu, KY, Chen, WT, Kuo, HN, et al. Estimation and clinical verification of the effective and skin doses for pediatric and adult patients undergoing the cardiac interventional examination using five PMMA phantoms and TLD/ionization chamber technique. Technol Health Care 2019;27:95–108.
Google Scholar | Crossref | Medline20. Farajollahi, A, Rahimi, A, Khayati Shal, E, et al. Patient’s radiation exposure in coronary angiography and angioplasty: the impact of different projections. J Cardiovasc Thorac Res 2014;6:247–252. doi:10.15171/jcvtr.2014.020
Google Scholar | Crossref | Medline21. Onorati, F, D’Errigo, P, Barbanti, M, et al. Different impact of sex on baseline characteristics and major periprocedural outcomes of transcatheter and surgical aortic valve interventions: results of the multicenter Italian OBSERVANT registry. J Thorac Cardiovasc Surg 2014;147:1529–1539. doi:10.1016/j.jtcvs.2013.05.039
Google Scholar | Crossref | Medline22. Laricchia, A, Bellini, B, Romano, V, et al. Sex and transcatheter aortic valve implantation: impact of female sex on clinical outcomes. Interv Cardiol 2019;14:137–141. doi:10.15420/icr.2019.07.R1
Google Scholar | Crossref | Medline23. Wilcox, RR . Robust regression: testing global hypotheses about the slopes when there is multicollinearity or heteroscedasticity. Br J Math Stat Psychol 2019;72:355–369. doi:10.1111/bmsp.12152
Google Scholar | Crossref | Medline24. Kuhn, M . Building predictive models in R using the caret package. J Stat Softw 2008;2:1–26. doi:10.18637/jss.v028.i05
Google Scholar | Crossref25. R Core Team . R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2020, Available at https://www.R-project.org/.
Google Scholar26. Botchkarev, A . Performance metrics (error measures) in machine learning regression, forecasting and prognostics: properties and typology. ArXi 2018. doi:10.28945/4184
Google Scholar | Crossref27. Li, J . Assessing the accuracy of predictive models for numerical data: not r nor r2, why not? Then what? PLoS One 2017;12:e0183250. doi:10.1371/journal.pone.0183250
Google Scholar | Crossref28. Bernardi, G, Padovani, R, Morocutti, G, et al. Clinical and technical determinants of the complexity of percutaneous transluminal coronary angioplasty procedures: analysis in relation to radiation exposure parameters. Catheter Cardiovasc Interv 2000;51:1–10. doi: 10.1002/1522-726x(200009)51:1<1::aid-ccd1>3.0.co;2-k
Google Scholar | Crossref | Medline | ISI

Comments (0)

No login
gif