1. Alkhouli, M, Alqahtani, F, Kalra, A, et al. Trends in characteristics and outcomes of patients undergoing coronary revascularization in the United States, 2003–2016. JAMA Netw Open 2020;3:e1921326. doi:
10.1001/jamanetworkopen.2019.21326 Google Scholar |
Crossref2. Faulkner, K, Werduch, A. An estimate of the collective dose to the European population from cardiac X-ray procedures. Br J Radiol 2008;8:1955–1962. doi:
10.1259/bjr/74139823 Google Scholar |
Crossref3. Togni, M, Balmer, F, Pfiffner, D, et al. Percutaneous coronary interventions in Europe 1992–2001. Eur Heart J 2004;25:1208–1213. doi:
10.1016/j.ehj.2004.04.024 Google Scholar |
Crossref |
Medline |
ISI4. Tsapaki, V, Ahmed, NA, AlSuwaidi, JS, et al. Radiation exposure to patients during interventional procedures in 20 countries: initial IAEA project results. AJR Am J Roentgenol 2009;193:559–569. doi:
10.2214/AJR.08.2115 Google Scholar |
Crossref |
Medline |
ISI5. Peruzzo Cornetto, A, Aimonetto, S, Pisano, F, et al. The contribution of interventional cardiology procedures to the population radiation dose in a ‘health-care level I’ representative region. Radiat Prot Dosimetry 2016;168:261–270. doi:
10.1093/rpd/ncv307 Google Scholar |
Crossref |
Medline6. Picano, E, Vano, E. The radiation issue in cardiology: the time for action is now. Cardiovasc Ultrasound 2011;9:35. doi:
10.1186/1476-7120-9-35 Google Scholar |
Crossref7. Sun, Z, AbAziz, A, Yusof, AK. Radiation-induced noncancer risks in interventional cardiology: optimisation of procedures and staff and patient dose reduction. Biomed Res Int 2013;2013:976962. doi:
10.1155/2013/976962 Google Scholar |
Crossref8. Osei, B, Xu, L, Johnston, A, et al. Retrospective study of patients radiation dose during cardiac catheterization procedures. Br J Radiol 2019;92:20181021. doi:
10.1259/bjr.20181021 Google Scholar |
Crossref9. Davidsen, C, Bolstad, K, Nygaard, E, et al. Temporal trends in X-Ray exposure during coronary angiography and percutaneous coronary intervention. J Interv Cardiol 2020;2020:9602942. doi:
10.1155/2020/9602942 Google Scholar |
Crossref10. Koenig, TR, Wolff, D, Mettler, FA, et al. Skin injuries from fluoroscopically guided procedures: part 1, characteristics of radiation injury. AJR Am J Roentgenol 2001;177:3–11. doi:
10.2214/ajr.177.1.1770003 Google Scholar |
Crossref |
Medline |
ISI11. Badawy, MK, Clark, T, Carrion, D, et al. Radiation dose optimization in interventional cardiology: a teaching hospital experience. Cardiol Res Prac 2018;2018:6912841. doi:
10.1155/2018/6912841 Google Scholar |
Crossref12. Stecker, MS, Balter, S, Towbin, RB, et al. Guidelines for patient radiation dose management. J Vasc Interv Radiol 2009;20:S263–S273.
Google Scholar |
Crossref |
Medline |
ISI13. Malchair F, Dabin J, Deleu M, et al. Review of skin dose calculation software in interventional cardiology. Physica Medica 2020(80):75–83.
Google Scholar |
Crossref14. Dabin J, Blidéanu V, Ciraj Bjelac O, et al. Accuracy of skin dose mapping in interventional cardiology: Comparison of 10 software products following a common protocol. Phys Med 2021;82:279–294.
Google Scholar |
Crossref15. Krajinović M, Dobrić M, Ciraj-Bjelac O. Skin dose mapping in interventional cardiology: a practical solution. Radiat Prot Dosimetry 2020;188(4):508–515.
Google Scholar |
Crossref16. Sharma, D, Ramsewak, A, O’Conaire, S, et al. Reducing radiation exposure during transcatheter aortic valve implantation (TAVI). Catheter Cardiovasc Interv 2015;85:1256–1261. doi:
10.1002/ccd.25363 Google Scholar |
Crossref |
Medline17. Fetterly, KA, Lennon, RJ, Bell, MR, et al. Clinical determinants of radiation dose in percutaneous coronary interventional procedures: influence of patient size, procedure complexity, and performing physician. JACC Cardiovasc Interv 2011;4:336–343. doi:
10.1016/j.jcin.2010.10.014 Google Scholar |
Crossref |
Medline18. Chida, K, Saito, H, Otani, H, et al. Relationship between fluoroscopic time, dose-area product, body weight, and maximum radiation skin dose in cardiac interventional procedures. AJR Am J Roentgenol 2006;186:774–778. doi:
10.2214/AJR.04.1653 Google Scholar |
Crossref |
Medline |
ISI19. Wu, KY, Chen, WT, Kuo, HN, et al. Estimation and clinical verification of the effective and skin doses for pediatric and adult patients undergoing the cardiac interventional examination using five PMMA phantoms and TLD/ionization chamber technique. Technol Health Care 2019;27:95–108.
Google Scholar |
Crossref |
Medline20. Farajollahi, A, Rahimi, A, Khayati Shal, E, et al. Patient’s radiation exposure in coronary angiography and angioplasty: the impact of different projections. J Cardiovasc Thorac Res 2014;6:247–252. doi:
10.15171/jcvtr.2014.020 Google Scholar |
Crossref |
Medline21. Onorati, F, D’Errigo, P, Barbanti, M, et al. Different impact of sex on baseline characteristics and major periprocedural outcomes of transcatheter and surgical aortic valve interventions: results of the multicenter Italian OBSERVANT registry. J Thorac Cardiovasc Surg 2014;147:1529–1539. doi:
10.1016/j.jtcvs.2013.05.039 Google Scholar |
Crossref |
Medline22. Laricchia, A, Bellini, B, Romano, V, et al. Sex and transcatheter aortic valve implantation: impact of female sex on clinical outcomes. Interv Cardiol 2019;14:137–141. doi:
10.15420/icr.2019.07.R1 Google Scholar |
Crossref |
Medline23. Wilcox, RR . Robust regression: testing global hypotheses about the slopes when there is multicollinearity or heteroscedasticity. Br J Math Stat Psychol 2019;72:355–369. doi:
10.1111/bmsp.12152 Google Scholar |
Crossref |
Medline24. Kuhn, M . Building predictive models in R using the caret package. J Stat Softw 2008;2:1–26. doi:
10.18637/jss.v028.i05 Google Scholar |
Crossref25. R Core Team . R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2020, Available at https://www.R-project.org/.
Google Scholar26. Botchkarev, A . Performance metrics (error measures) in machine learning regression, forecasting and prognostics: properties and typology. ArXi 2018. doi:
10.28945/4184 Google Scholar |
Crossref27. Li, J . Assessing the accuracy of predictive models for numerical data: not r nor r2, why not? Then what? PLoS One 2017;12:e0183250. doi:
10.1371/journal.pone.0183250 Google Scholar |
Crossref28. Bernardi, G, Padovani, R, Morocutti, G, et al. Clinical and technical determinants of the complexity of percutaneous transluminal coronary angioplasty procedures: analysis in relation to radiation exposure parameters. Catheter Cardiovasc Interv 2000;51:1–10. doi:
10.1002/1522-726x(200009)51:1<1::aid-ccd1>3.0.co;2-k Google Scholar |
Crossref |
Medline |
ISI
Comments (0)