Structural and functional markers of optic nerve damage in myelin oligodendrocyte glycoprotein antibody-associated optic neuritis

1. Ramanathan, S, Mohammad, S, Tantsis, E, et al. Clinical course, therapeutic responses and outcomes in relapsing MOG antibody-associated demyelination. J Neurol Neurosurg Psychiatry 2018; 89: 127–137. DOI: 10.1136/jnnp-2017–316880.
Google Scholar | Crossref | Medline2. Ramanathan, S, Prelog, K, Barnes, EH, et al. Radiological differentiation of optic neuritis with myelin oligodendrocyte glycoprotein antibodies, aquaporin-4 antibodies, and multiple sclerosis. Mult Scler 2016; 22: 470–482. DOI: 10.1177/1352458515593406.
Google Scholar | SAGE Journals | ISI3. Ramanathan, S, Reddel, SW, Henderson, A, et al. Antibodies to myelin oligodendrocyte glycoprotein in bilateral and recurrent optic neuritis. Neurol Neuroimmunol Neuroinflamm 2014; 1: e40. DOI: 10.1212/NXI.0000000000000040.
Google Scholar | Crossref | Medline4. Jitprapaikulsan, J, Chen, JJ, Flanagan, EP, et al. Aquaporin-4 and myelin oligodendrocyte glycoprotein autoantibody status predict outcome of recurrent optic neuritis. Ophthalmology 2018; 125: 1628–1637. DOI: 10.1016/j.ophtha.2018.03.041.
Google Scholar | Crossref | Medline5. Sotirchos, ES, Filippatou, A, Fitzgerald, KC, et al. Aquaporin-4 IgG seropositivity is associated with worse visual outcomes after optic neuritis than MOG-IgG seropositivity and multiple sclerosis, independent of macular ganglion cell layer thinning. Mult Scler 2019: 1352458519864928. DOI: 10.1177/1352458519864928.
Google Scholar6. Min, JH, Kim, BJ, Lee, KH. Development of extensive brain lesions following fingolimod (FTY720) treatment in a patient with neuromyelitis optica spectrum disorder. Mult Scler 2012; 18: 113–115. DOI: 10.1177/1352458511431973.
Google Scholar | SAGE Journals | ISI7. Jacob, A, Hutchinson, M, Elsone, L, et al. Does natalizumab therapy worsen neuromyelitis optica? Neurology 2012; 79: 1065–1066. DOI: 10.1212/WNL.0b013e31826845fe.
Google Scholar | Crossref | Medline | ISI8. Jarius, S, Ruprecht, K, Kleiter, I, et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: Epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. J Neuroinflammation 2016; 13: 280. DOI: 10.1186/s12974-016-0718-0.
Google Scholar | Crossref | Medline | ISI9. Mealy, MA, Wingerchuk, DM, Palace, J, et al. Comparison of relapse and treatment failure rates among patients with neuromyelitis optica: multicenter study of treatment efficacy. JAMA Neurol 2014; 71: 324–330. DOI: 10.1001/jamaneurol.2013.5699.
Google Scholar | Crossref | Medline | ISI10. Pache, F, Zimmermann, H, Mikolajczak, J, et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 4: Afferent visual system damage after optic neuritis in MOG-IgG-seropositive versus AQP4-IgG-seropositive patients. J Neuroinflammation 2016; 13: 282. DOI: 10.1186/s12974-016-0720-6.
Google Scholar | Crossref | Medline | ISI11. You, Y, Klistorner, A, Thie, J, et al. Latency delay of visual evoked potential is a real measurement of demyelination in a rat model of optic neuritis. Invest Ophthalmol Vis Sci 2011; 52: 6911–6918. DOI: 10.1167/iovs.11-7434.
Google Scholar | Crossref | Medline | ISI12. Alshowaeir, D, Yiannikas, C, Klistorner, A. Multifocal visual evoked potential (mfVEP) and pattern-reversal visual evoked potential changes in patients with visual pathway disorders: a case series. Neuroophthalmology 2015; 39: 220–233. DOI: 10.3109/01658107.2015.1074253.
Google Scholar | Crossref | Medline13. Dale, RC, Tantsis, EM, Merheb, V, et al. Antibodies to MOG have a demyelination phenotype and affect oligodendrocyte cytoskeleton. Neurol Neuroimmunol Neuroinflamm 2014; 1: e12. DOI: 10.1212/NXI.0000000000000012.
Google Scholar | Crossref | Medline14. Shen, T, You, Y, Arunachalam, S, et al. Differing structural and functional patterns of optic nerve damage in multiple sclerosis and neuromyelitis optica spectrum disorder. Ophthalmology 2019; 126: 445–453. DOI: 10.1016/j.ophtha.2018.06.022.
Google Scholar | Crossref | Medline15. Polman, CH, Reingold, SC, Banwell, B, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 2011; 69: 292–302. DOI: 10.1002/ana.22366.
Google Scholar | Crossref | Medline | ISI16. Wingerchuk, DM, Banwell, B, Bennett, JL, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015; 85: 177–189. DOI: 10.1212/WNL.0000000000001729.
Google Scholar | Crossref | Medline | ISI17. Klistorner, A, Arvind, H, Garrick, R, et al. Interrelationship of optical coherence tomography and multifocal visual-evoked potentials after optic neuritis. Invest Ophthalmol Vis Sci 2010; 51: 2770–2777. DOI: 10.1167/iovs.09-4577.
Google Scholar | Crossref | Medline18. Graham, EC, You, Y, Yiannikas, C, et al. Progressive loss of retinal ganglion cells and axons in nonoptic neuritis eyes in multiple sclerosis: a longitudinal optical coherence tomography study. Invest Ophthalmol Vis Sci 2016; 57: 2311–2317. DOI: 10.1167/iovs.15-19047.
Google Scholar | Crossref | Medline19. Kaushik, M, Wang, CY, Barnett, MH, et al. Inner nuclear layer thickening is inversely proportional to retinal ganglion cell loss in optic neuritis. PLoS One 2013; 8: e78341. DOI: 10.1371/journal.pone.0078341.
Google Scholar | Crossref | Medline20. Sriram, P, Graham, SL, Wang, C, et al. Transsynaptic retinal degeneration in optic neuropathies: optical coherence tomography study. Invest Ophthalmol Vis Sci 2012; 53: 1271–1275. DOI: 10.1167/iovs.11-8732.
Google Scholar | Crossref | Medline21. Tewarie, P, Balk, L, Costello, F, et al. The OSCAR-IB consensus criteria for retinal OCT quality assessment. PLoS ONE 2012; 7(4): e34823.
Google Scholar | Crossref | Medline22. Cruz-Herranz, A, Balk, LJ, Oberwahrenbrock, T, et al. The APOSTEL recommendations for reporting quantitative optical coherence tomography studies. Neurology 2016; 86: 2303–2309. DOI: 10.1212/WNL.0000000000002774.
Google Scholar | Crossref | Medline | ISI23. Klistorner, AI, Graham, SL. Electroencephalogram-based scaling of multifocal visual evoked potentials: effect on intersubject amplitude variability. Invest Ophthalmol Vis Sci 2001; 42: 2145–2152.
Google Scholar | Medline24. Klistorner, A, Garrick, R, Barnett, MH, et al. Axonal loss in non-optic neuritis eyes of patients with multiple sclerosis linked to delayed visual evoked potential. Neurology 2013; 80: 242–245. DOI: 10.1212/WNL.0b013e31827deb39.
Google Scholar | Crossref | Medline | ISI25. Danesh-Meyer, H, Savino, PJ, Gamble, GG. Poor prognosis of visual outcome after visual loss from giant cell arteritis. Ophthalmology 2005; 112: 1098–1103. DOI: 10.1016/j.ophtha.2005.01.036.
Google Scholar | Crossref | Medline | ISI26. Armstrong, RA . When to use the Bonferroni correction. Ophthalmic Physiol Opt 2014; 34: 502–508. DOI: 10.1111/opo.12131.
Google Scholar | Crossref | Medline | ISI27. JA, Lopez†, SD, Houston†, Tea, F, et al. Validation of a flow cytometry live cell-based assay to detect myelin oligodendrocyte glycoprotein antibodies for clinical diagnostics. J Appl Lab Med in press. DOI: 10.1093/jalm/jfab101.
Google Scholar28. Tea, F, Lopez, JA, Ramanathan, S, et al. Characterization of the human myelin oligodendrocyte glycoprotein antibody response in demyelination. Acta Neuropathol Commun 2019; 7: 145. DOI: 10.1186/s40478-019-0786-3.
Google Scholar | Crossref | Medline29. Stiebel-Kalish, H, Lotan, I, Brody, J, et al. Retinal nerve fiber layer may be better preserved in MOG-IgG versus AQP4-IgG optic neuritis: a cohort study. PLoS One 2017; 12: e0170847. DOI: 10.1371/journal.pone.0170847.
Google Scholar | Crossref | Medline30. Jones, SJ, Brusa, A. Neurophysiological evidence for long-term repair of MS lesions: implications for axon protection. J Neurol Sci 2003; 206: 193–198. DOI: 10.1016/s0022-510x(02)00428-8.
Google Scholar | Crossref | Medline | ISI31. Puthenparampil, M, Federle, L, Poggiali, D, et al. Trans-synaptic degeneration in the optic pathway. A study in clinically isolated syndrome and early relapsing-remitting multiple sclerosis with or without optic neuritis. PLoS One 2017; 12: e0183957. DOI: 10.1371/journal.pone.0183957.
Google Scholar | Crossref | Medline32. Van den Berg-Vos, RM, Franssen, H, Wokke, JH, et al. Multifocal motor neuropathy: long-term clinical and electrophysiological assessment of intravenous immunoglobulin maintenance treatment. Brain 2002; 125: 1875–1886. DOI: 10.1093/brain/awf193.
Google Scholar | Crossref | Medline33. Rinaldi, S, Davies, A, Fehmi, J, et al. Overlapping central and peripheral nervous system syndromes in MOG antibody-associated disorders. Neurol Neuroimmunol Neuroinflamm 2021; 8. DOI: 10.1212/NXI.0000000000000924.
Google Scholar | Crossref34. Fujihara, K . Neuromyelitis optica spectrum disorders: still evolving and broadening. Curr Opin Neurol 2019; 32: 385–394. DOI: 10.1097/WCO.0000000000000694.
Google Scholar | Crossref | Medline35. Saadoun, S, Waters, P, Owens, GP, et al. Neuromyelitis optica MOG-IgG causes reversible lesions in mouse brain. Acta Neuropathol Commun 2014; 2: 35. DOI: 10.1186/2051-5960-2-35.
Google Scholar | Crossref | Medline | ISI36. Zephir, H . Progress in understanding the pathophysiology of multiple sclerosis. Rev Neurol (Paris) 2018; 174: 358–363. DOI: 10.1016/j.neurol.2018.03.006.
Google Scholar | Crossref | Medline37. Takai, Y, Misu, T, Kaneko, K, et al. Myelin oligodendrocyte glycoprotein antibody-associated disease: an immunopathological study. Brain 2020; 143: 1431–1446. DOI: 10.1093/brain/awaa102.
Google Scholar | Crossref | Medline38. Mader, S, Gredler, V, Schanda, K, et al. Complement activating antibodies to myelin oligodendrocyte glycoprotein in neuromyelitis optica and related disorders. J Neuroinflammation 2011; 8: 184. DOI: 10.1186/1742-2094-8-184.
Google Scholar | Crossref | Medline | ISI39. Marta, CB, Taylor, CM, Coetzee, T, et al. Antibody cross-linking of myelin oligodendrocyte glycoprotein leads to its rapid repartitioning into detergent-insoluble fractions, and altered protein phosphorylation and cell morphology. J Neurosci 2003; 23: 5461–5471.
Google Scholar | Crossref | Medline40. Westland, KW, Pollard, JD, Sander, S, et al. Activated non-neural specific T cells open the blood-brain barrier to circulating antibodies. Brain 1999; 122 (Pt 7): 1283–1291. DOI: 10.1093/brain/122.7.1283.
Google Scholar | Crossref | Medline41. You, Y, Graham, EC, Shen, T, et al. Progressive inner nuclear layer dysfunction in non-optic neuritis eyes in MS. Neurol Neuroimmunol Neuroinflamm 2018; 5: e427. DOI: 10.1212/NXI.0000000000000427.
Google Scholar | Crossref | Medline42. Oertel, FC, Outteryck, O, Knier, B, et al. Optical coherence tomography in myelin-oligodendrocyte-glycoprotein antibody-seropositive patients: a longitudinal study. J Neuroinflammation 2019; 16: 154. DOI: 10.1186/s12974-019-1521-5.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif