Exploring the association with disease recurrence of miRNAs predictive of colorectal cancer

1. Vera, R, Aparicio, J, Carballo, F, et al. Recommendations for follow-up of colorectal cancer survivors. Clin Transl Oncol 2019; 21: 1302–1311.
Google Scholar | Crossref | Medline2. Rentsch, M, Schiergens, T, Khandoga, A, et al. Surgery for colorectal cancer – trends, developments, and future perspectives. Visc Med 2016; 32: 184–191.
Google Scholar | Crossref | Medline3. Fahy, BN . Follow-up after curative resection of colorectal cancer. Ann Surg Oncol 2014; 21: 738–746.
Google Scholar | Crossref | Medline4. Bettegowda, C, Sausen, M, Leary, RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 2014; 6: 224ra24.
Google Scholar | Crossref | Medline5. Chen, X, Ba, Y, Ma, L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008; 18: 997–1006.
Google Scholar | Crossref | Medline | ISI6. Mitchell, PS, Parkin, RK, Kroh, EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 2008; 105: 10513–10518.
Google Scholar | Crossref | Medline | ISI7. Lawrie, CH, Gal, S, Dunlop, HM, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 2008; 141: 672–675.
Google Scholar | Crossref | Medline | ISI8. Cuk, K, Zucknick, M, Madhavan, D, et al. Plasma microRNA panel for minimally invasive detection of breast cancer. PLoS One 2013; 8: e76729.
Google Scholar | Crossref | Medline9. Hamam, R, Hamam, D, Alsaleh, KA, et al. Circulating microRNAs in breast cancer: novel diagnostic and prognostic biomarkers. Cell Death Dis 2017; 8: e3045.
Google Scholar | Crossref | Medline10. Zanutto, S, Pizzamiglio, S, Ghilotti, M, et al. Circulating miR-378 in plasma: a reliable, haemolysis-independent biomarker for colorectal cancer. Br J Cancer 2014; 110: 1001–1007.
Google Scholar | Crossref | Medline | ISI11. Zanutto, S, Ciniselli, CM, Belfiore, A, et al. Plasma miRNA-based signatures in CRC screening programs. Int J Cancer 2020; 146: 1164–1173.
Google Scholar | Crossref | Medline12. Pizzamiglio, S, Zanutto, S, Ciniselli, CM, et al. A methodological procedure for evaluating the impact of hemolysis on circulating microRNAs. Oncol Lett 2017; 13: 315–320.
Google Scholar | Crossref | Medline13. Wang, H, Wu, J, Meng, X, et al. MicroRNA-342 inhibits colorectal cancer cell proliferation and invasion by directly targeting DNA methyltransferase 1. Carcinogenesis 2011; 32: 1033–1042.
Google Scholar | Crossref | Medline | ISI14. Weng, W, Okugawa, Y, Toden, S, et al. FOXM1 And FOXQ1 Are promising prognostic biomarkers and novel targets of tumor-suppressive miR-342 in human colorectal cancer. Clin Cancer Res 2016; 22: 4947–4957.
Google Scholar | Crossref | Medline15. Zeng, M, Zhu, L, Li, L, et al. miR-378 suppresses the proliferation, migration and invasion of colon cancer cells by inhibiting SDAD1. Cell Mol Biol Lett 2017; 22: 12.
Google Scholar | Crossref | Medline16. Giraldez, MD, Lozano, JJ, Ramirez, G, et al. Circulating microRNAs as biomarkers of colorectal cancer: results from a genome-wide profiling and validation study. Clin Gastroenterol Hepatol 2013; 11: 681–688.e3.
Google Scholar | Crossref | Medline17. Sun, X, Lin, F, Sun, W, et al. Exosome-transmitted miRNA-335-5p promotes colorectal cancer invasion and metastasis by facilitating EMT via targeting RASA1. Mol Ther Nucleic Acids 2021; 24: 164–174.
Google Scholar | Crossref | Medline18. Wang, C, Liu, P, Wu, H, et al. MicroRNA-323-3p inhibits cell invasion and metastasis in pancreatic ductal adenocarcinoma via direct suppression of SMAD2 and SMAD3. Oncotarget 2016; 7: 14912–14924.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif