1. Xie, Y, Bowe, B, Mokdad, AH, et al. Analysis of the global burden of disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016. Kidney Int 2018;94:567–581.
Google Scholar |
Crossref |
Medline2. Centers for Disease Control and Prevention . Chronic Kidney Disease Surveillance System. Available at:
https://nccd.cdc.gov/CKD (accessed 7 January 2019).
Google Scholar3. Park, JI, Baek, H, Jung, HH. Prevalence of chronic kidney disease in Korea: the Korean National Health and Nutritional Examination Survey 2011–2013. J Korean Med Sci 2016;31:915–923.
Google Scholar |
Crossref |
Medline4. Go, AS, Chertow, GM, Fan, D, et al. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004;351:1296–1305.
Google Scholar |
Crossref |
Medline |
ISI5. Liu, Y . Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 2011;7:684–696.
Google Scholar |
Crossref |
Medline |
ISI6. Nath, KA . Tubulointerstitial changes as a major determinant in the progression of renal damage. Am J Kidney Dis 1992;20:1–17.
Google Scholar |
Crossref |
Medline |
ISI7. Fogo, AB . Mechanisms of progression of chronic kidney disease. Pediatr Nephrol 2007;22:2011–2022.
Google Scholar |
Crossref |
Medline |
ISI8. Bakdash, K, Schramm, KM, Annam, A, et al. Complications of percutaneous renal biopsy. Semin Interv Radiol 2019;36:97–103.
Google Scholar |
Crossref |
Medline9. Trajceska, L, Severova-Andreevska, G, Dzekova-Vidimliski, P, et al. Complications and risks of percutaneous renal biopsy. Open Access Maced J Med Sci 2019;7:992–995.
Google Scholar |
Crossref |
Medline10. Inoue, T, Kozawa, E, Okada, H, et al. Noninvasive evaluation of kidney hypoxia and fibrosis using magnetic resonance imaging. J Am Soc Nephrol 2011;22:1429–1434.
Google Scholar |
Crossref |
Medline |
ISI11. Takahashi, T, Wang, F, Quarles, CC. Current MRI techniques for the assessment of renal disease. Curr Opin Nephrol Hypertens 2015;24:217–223.
Google Scholar |
Crossref |
Medline12. Mahmoud, H, Buchanan, C, Francis, ST, et al. Imaging the kidney using magnetic resonance techniques: structure to function. Curr Opin Nephrol Hypertens 2016;25:487–493.
Google Scholar |
Crossref |
Medline13. Berchtold, L, Friedli, I, Vallee, JP, et al. Diagnosis and assessment of renal fibrosis: the state of the art. Swiss Med Weekly 2017;147:w14442.
Google Scholar |
Medline14. Li, J, An, C, Kang, L, et al. Recent advances in magnetic resonance imaging assessment of renal fibrosis. Adv Chronic Kidney Dis 2017;24:150–153.
Google Scholar |
Crossref |
Medline15. Petitclerc, L, Gilbert, G, Nguyen, BN, et al. Liver fibrosis quantification by magnetic resonance imaging. Top Magn Reson Imaging 2017;26:229–241.
Google Scholar |
Crossref |
Medline16. Shuvy, M, Nyska, A, Beeri, R, et al. Histopathology and apoptosis in an animal model of reversible renal injury. Exp Toxicol Pathol 2011;63:303–306.
Google Scholar |
Crossref |
Medline17. Diwan, V, Mistry, A, Gobe, G, et al. Adenine-induced chronic kidney and cardiovascular damage in rats. J Pharmacol Toxicol Methods 2013;68:197–207.
Google Scholar |
Crossref |
Medline18. Diwan, V, Brown, L, Gobe, GC. Adenine-induced chronic kidney disease in rats. Nephrology (Carlton) 2018;23:5–11.
Google Scholar |
Crossref |
Medline19. Shackelford, C, Long, G, Wolf, J, et al. Qualitative and quantitative analysis of nonneoplastic lesions in toxicology studies. Toxicol Pathol 2002;30:93–96.
Google Scholar |
SAGE Journals |
ISI20. Leung, G, Kirpalani, A, Szeto, SG, et al. Could MRI be used to image kidney fibrosis? A review of recent advances and remaining barriers. Clin J Am Soc Nephrol 2017;12:1019–1028.
Google Scholar |
Crossref |
Medline21. Togao, O, Doi, S, Kuro-o, M, et al. Assessment of renal fibrosis with diffusion-weighted MR imaging: study with murine model of unilateral ureteral obstruction. Radiology 2010;255:772–780.
Google Scholar |
Crossref |
Medline22. Szafer, A, Zhong, J, Gore, JC. Theoretical model for water diffusion in tissues. Magn Reson Med 1995;33:697–712.
Google Scholar |
Crossref |
Medline |
ISI23. Woo, S, Cho, JY, Kim, SY, et al. Intravoxel incoherent motion MRI-derived parameters and T2* relaxation time for noninvasive assessment of renal fibrosis: an experimental study in a rabbit model of unilateral ureter obstruction. Magn Reson Imaging 2018;51:104–112.
Google Scholar |
Crossref |
Medline24. Morrell, GR, Zhang, JL, Lee, VS. Magnetic resonance imaging of the fibrotic kidney. J Am Soc Nephrol 2017;28:2564–2570.
Google Scholar |
Crossref |
Medline25. Thoeny, HC, Zumstein, D, Simon-Zoula, S, et al. Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience. Radiology 2006;241:812–821.
Google Scholar |
Crossref |
Medline |
ISI26. Thoeny, HC, De Keyzer, F. Diffusion-weighted MR imaging of native and transplanted kidneys. Radiology 2011;259:25–38.
Google Scholar |
Crossref |
Medline |
ISI27. Hueper, K, Khalifa, AA, Bräsen, JH, et al. Diffusion-weighted imaging and diffusion tensor imaging detect delayed graft function and correlate with allograft fibrosis in patients early after kidney transplantation. J Magn Reson Imaging 2016;44:112–121.
Google Scholar |
Crossref |
Medline28. Boor, P, Perkuhn, M, Weibrecht, M, et al. Diffusion-weighted MRI does not reflect kidney fibrosis in a rat model of fibrosis. J Magn Reson Imaging 2015;42:990–998.
Google Scholar |
Crossref |
Medline29. Schley, G, Jordan, J, Ellmann, S, et al. Multiparametric magnetic resonance imaging of experimental chronic kidney disease: a quantitative correlation study with histology. PLoS One 2018;13:e0200259.
Google Scholar |
Crossref |
Medline30. Wang, L, Regatte, RR. Regatte basic principles of T1 rho MRI and its application of musculoskeletal system. J Magn Reson Imaging 2015;41:586–600.
Google Scholar |
Crossref |
Medline |
ISI31. Gilani, IA, Sepponen, R. Quantitative rotating frame relaxometry methods in MRI. NMR Biomed 2016;29:841–861.
Google Scholar |
Crossref |
Medline32. Zhao, F, Yuan, J, Deng, M, et al. Further exploration of MRI techniques for liver T1rho quantification. Quant Imaging Med Surg 2013;3:308–315.
Google Scholar |
Medline33. Wang, YX, Yuan, J, Chu, ES, et al. T1rho MR imaging is sensitive to evaluate liver fibrosis: an experimental study in a rat biliary duct ligation model. Radiology 2011;259:712–719.
Google Scholar |
Crossref |
Medline |
ISI34. Han, Y, Liimatainen, T, Gorman, RC, et al. Assessing myocardial disease using T1rho MRI. Curr Cardiovasc Imaging Rep 2014;7:9248.
Google Scholar |
Crossref |
Medline35. Hu, G, Liang, W, Wu, M, et al. Comparison of T1 mapping and T1rho values with conventional diffusion-weighted imaging to assess fibrosis in a rat model of unilateral ureteral obstruction. Acad Radiol 2019;26:22–29.
Google Scholar |
Crossref |
Medline36. Hectors, SJ, Bane, O, Kennedy, P, et al. T1ρ mapping for assessment of renal allograft fibrosis. J Magn Reson Imaging 2019;50:1085–1091.
Google Scholar |
Crossref |
Medline37. Xie, S, Qi, H, Li, Q, et al. Liver injury monitoring, fibrosis staging and inflammation grading using T1rho magnetic resonance imaging: an experimental study in rats with carbon tetrachloride intoxication. BMC Gastroenterol 2020;20:14.
Google Scholar38. Prasad, PV, Edelman, RR, Epstein, FH. Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. Circulation 1996;94:3271–3215.
Google Scholar |
Crossref |
Medline |
ISI39. Fine, LG, Orphanides, C, Norman, JT. Progressive renal disease: the chronic hypoxia hypothesis. Kidney Int Suppl 1998;65:S74–S78.
Google Scholar |
Medline40. Shepherd, TM, Thelwall, PE, Stanisz, GJ, et al. Aldehyde fixative solutions alter the water relaxation and diffusion properties of nervous tissue. Magn Reson Med 2009;62:26–34.
Google Scholar |
Crossref |
Medline |
ISI41. Charagundla, SR, Borthakur, A, Leigh, JS, et al. Artifacts in T1rho-weighted imaging: correction with a self-compensating spin-locking pulse. J Magn Reson 2003;162:113–121.
Google Scholar |
Crossref |
Medline |
ISI
Comments (0)