CT radiomics models are unable to predict new liver metastasis after successful thermal ablation of colorectal liver metastases

1. van der Pool, AE, Damhuis, RA, Ijzermans, JN, et al. Trends in incidence, treatment and survival of patients with stage IV colorectal cancer: a population-based series. Colorectal Dis 2012;14:56–61.
Google Scholar | Crossref | Medline | ISI2. Otto, G, Duber, C, Hoppe-Lotichius, M, et al. Radiofrequency ablation as first-line treatment in patients with early colorectal liver metastases amenable to surgery. Ann Surg 2010;251:796–803.
Google Scholar | Crossref | Medline3. Solbiati, L, Ahmed, M, Cova, L, et al. Small liver colorectal metastases treated with percutaneous radiofrequency ablation: local response rate and long-term survival with Up to 10-year follow-up. Radiology 2012;265:958–968.
Google Scholar | Crossref | Medline | ISI4. Puijk, RS, Ruarus, AH, Vroomen, L, et al. Colorectal liver metastases: surgery versus thermal ablation (COLLISION) - a phase III single-blind prospective randomized controlled trial. BMC Cancer 2018;18:821.
Google Scholar | Crossref | Medline5. Ruers, T, Punt, C, Van Coevorden, F, et al. Radiofrequency ablation combined with systemic treatment versus systemic treatment alone in patients with non-resectable colorectal liver metastases: a randomized EORTC intergroup phase II study (EORTC 40004). Ann Oncol 2012;23:2619–2626.
Google Scholar | Crossref | Medline | ISI6. Gillams, A, Goldberg, N, Ahmed, M, et al. Thermal ablation of colorectal liver metastases: a position paper by an international panel of ablation experts, The Interventional Oncology Sans Frontières meeting 2013. Eur Radiol 2015;25:3438–3454.
Google Scholar | Crossref | Medline | ISI7. Shady, W, Petre, EN, Gonen, M, et al. Percutaneous radiofrequency ablation of colorectal cancer liver metastases: factors affecting outcomes--A 10-year experience at a single center. Radiology 2016;278:601–611.
Google Scholar | Crossref | Medline8. Shady, W, Petre, EN, Do, KG, et al. Percutaneous microwave versus radiofrequency ablation of colorectal liver metastases: ablation with clear margins (A0) provides the best local tumor control. J Vasc Interv Radiol 2018;29:268–275.e261.
Google Scholar | Crossref | Medline9. Han, K, Kim, JH, Yang, SG, et al. A single-center retrospective analysis of periprocedural variables affecting local tumor progression after radiofrequency ablation of colorectal cancer liver metastases. Radiology 2021;298:212–218.
Google Scholar | Crossref | Medline10. Lambin, P, Leijenaar, RTH, Deist, TM, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 2017;14:749.
Google Scholar | Crossref | Medline11. Gillies, RJ, Kinahan, PE, Hricak, H. Radiomics: images are more than pictures, they are data. Radiology 2016;278:563–577.
Google Scholar | Crossref | Medline12. Beckers RCJ, Lambregts DMJ, Schnerr RS, et al. Whole liver CT texture analysis to predict the development of colorectal liver metastases-A multicentre study. Eur J Radiol 2017;92:64–71.
Google Scholar | Crossref13. Taghavi M, Trebeschi S, Simões R, et al. Machine learningbased analysis of CT radiomics model for prediction of colorectal metachronous liver metastases. Abdom Radiol (NY) 2021;46:249–256.
Google Scholar | Crossref14. Crocetti, L, de Baére, T, Pereira, PL, et al. CIRSE standards of practice on thermal ablation of liver tumours. Cardiovasc Intervent Radiol 2020;43:951–962.
Google Scholar | Crossref | Medline15. Federatie Medisch Specialisten . Richtlijn Colorectaal carcinoom. 2019. Available at: https://richtlijnendatabase.nl/richtlijn/colorectaal_carcinoom_crc/startpagina_-_crc.html (accessed 14 July 2020).
Google Scholar16. Fedorov, A, Beichel, R, Kalpathy-Cramer, J, et al. 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 2012;30:1323–1341.
Google Scholar | Crossref | Medline | ISI17. van Griethuysen, JJM, Fedorov, A, Parmar, C, et al. Computational radiomics system to decode the radiographic phenotype. Cancer Res 2017;77:e104–e107.
Google Scholar | Crossref | Medline18. Buck, SF . A method of estimation of missing values in multivariate data suitable for use with an electronic computer. J R Stat Soc Series B Stat Methodol 1960;22:302–306.
Google Scholar19. Bergstra, J, Yamins, D, Cox, DD. Hyperopt: A python library for optimizing the hyperparameters of machine learning algorithms. Proceedings of the 12th Python in Science Conference, (SciPy 2013), pp. 13--2, Austin, Texas.
Google Scholar20. Rao SX, Lambregts DM, Schnerr RS, et al. Whole-liver CT texture analysis in colorectal cancer: Does the presence of liver metastases affect the texture of the remaining liver? United European Gastroenterol J 2014;2:530–538.
Google Scholar | SAGE Journals21. Ganeshan, B, Miles, KA, Young, RC, et al. Texture analysis in non-contrast enhanced CT: impact of malignancy on texture in apparently disease-free areas of the liver. Eur J Radiol 2009;70:101–110.
Google Scholar | Crossref | Medline | ISI22. Maas M, Beets-Tan R, Gaubert J-Y, et al. Follow-up after radiological intervention in oncology: ECIO-ESOI evidence and consensus-based recommendations for clinical practice. Insights Imaging 2020;11:83.
Google Scholar | Crossref23. Song, J, Yin, Y, Wang, H, Chang, Z, Liu, Z, Cui, L. A review of original articles published in the emerging field of radiomics. Eur J Radiol 2020;127:108991.
Google Scholar | Crossref | Medline24. Buvat, I, Orlhac, F. The dark side of radiomics: on the paramount importance of publishing negative results. J Nucl Med 2019;60:1543–1544.
Google Scholar | Crossref | Medline25. Mackin, D, Fave, X, Zhang, L, et al. Measuring computed tomography scanner variability of radiomics features. Invest Radiol 2015;50:757–765.
Google Scholar | Crossref | Medline26. Mackin, D, Ger, R, Dodge, C, et al. Effect of tube current on computed tomography radiomic features. Sci Rep 2018;8:2354.
Google Scholar | Crossref | Medline

Comments (0)

No login
gif