The role of perceptual and cognitive load on inattentional blindness: A systematic review and three meta-analyses

Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., MacIntyre, B. (2001). Recent advances in augmented reality. IEEE Computer Graphics and Applications, 21(6), 34–47. https://doi.org/10.1109/38.963459
Google Scholar | Crossref Baars, B. J. (1988). A cognitive theory of consciousness. Cambridge University Press. https://philpapers.org/rec/BAAACT
Google Scholar Baars, B. J., Franklin, S. (2003). How conscious experience and working memory interact. Trends in Cognitive Sciences, 7(4), 166–172. https://doi.org/10.1016/S1364-6613(03)00056-1
Google Scholar | Crossref Baddeley, A. D. (1996). Exploring the central executive. The Quarterly Journal of Experimental Psychology Section A, 49(1), 5–28. https://doi.org/10.1080/713755608
Google Scholar | SAGE Journals Barrouillet, P., Camos, V. (2020). The time-based resource-sharing model of working memory. In Logie, R. H., Camos, V., Cowan, N. (Eds.), Working memory: The state of the science (pp. 85–115). Oxford Scholarship Online. https://doi.org/10.1093/OSO/9780198842286.003.0004
Google Scholar | Crossref Barrouillet, P., Portrat, S., Camos, V. (2011). On the law relating processing to storage in working memory. Psychological Review, 118(2), 175–192. https://doi.org/10.1037/a0022324
Google Scholar | Crossref Beanland, V., Allen, R. A., Pammer, K. (2011). Attending to music decreases inattentional blindness. Consciousness and Cognition, 20(4), 1282–1292. https://doi.org/10.1016/j.concog.2011.04.009
Google Scholar | Crossref Beanland, V., Chan, E. H. C. (2016). The relationship between sustained inattentional blindness and working memory capacity. Attention, Perception, & Psychophysics, 78(3), 808–817. https://doi.org/10.3758/s13414-015-1027-x
Google Scholar | Crossref Beanland, V., Pammer, K. (2010). Looking without seeing or seeing without looking? Eye movements in sustained inattentional blindness. Vision Research, 50(10), 977–988. https://doi.org/10.1016/j.visres.2010.02.024
Google Scholar | Crossref Becker, B. J. (2000). Multivariate Meta-analysis. In Tinsley, H. E. A., Brown, E. D. (Eds.), Handbook of applied multivariate statistics and mathematical modeling (pp. 499–525). Elsevier. https://doi.org/10.1016/b978-012691360-6/50018-5
Google Scholar | Crossref Benoni, H., Tsal, Y. (2012). Controlling for dilution while manipulating load: Perceptual and sensory limitations are just two aspects of task difficulty. Psychonomic Bulletin & Review, 19(4), 631–638. https://doi.org/10.3758/s13423-012-0244-8
Google Scholar | Crossref Benoni, H., Tsal, Y. (2013). Conceptual and methodological concerns in the theory of perceptual load. Frontiers in Psychology, 4, Article 552. https://doi.org/10.3389/fpsyg.2013.00522
Google Scholar | Crossref Bottani, E., Vignali, G. (2019). Augmented reality technology in the manufacturing industry: A review of the last decade. IISE Transactions, 51(3), 284–310. https://doi.org/10.1080/24725854.2018.1493244
Google Scholar | Crossref Braly, A. M., Nuernberger, B., Kim, S. Y. (2019). Augmented reality improves procedural work on an international space station science instrument. Human Factors, 61(6), 866–878. https://doi.org/10.1177/0018720818824464
Google Scholar | SAGE Journals Bredemeier, K., Simons, D. J. (2012). Working memory and inattentional blindness. Psychonomic Bulletin & Review, 19(2), 239–244. https://doi.org/10.3758/s13423-011-0204-8
Google Scholar | Crossref Broadbent, D. E. (1958). Perception and communication. Pergamon Press.
Google Scholar | Crossref Bruckmaier, M., Tachtsidis, I., Phan, P., Lavie, N. (2020). Attention and capacity limits in perception: A cellular metabolism account. Journal of Neuroscience, 40(35), 6801–6811. https://doi.org/10.1523/JNEUROSCI.2368-19.2020
Google Scholar | Crossref Burke, J. F., Sussman, J. B., Kent, D. M., Hayward, R. A. (2015). Three simple rules to ensure reasonably credible subgroup analyses. BMJ, 351, Article h5651. https://doi.org/10.1136/bmj.h5651
Google Scholar | Crossref Calvillo, D. P., Jackson, R. E. (2014). Animacy, perceptual load, and inattentional blindness. Psychonomic Bulletin & Review, 21(3), 670–675. https://doi.org/10.3758/s13423-013-0543-8
Google Scholar | Crossref Caparos, S., Linnell, K. J. (2010). The spatial focus of attention is controlled at perceptual and cognitive levels. Journal of Experimental Psychology: Human Perception and Performance, 36(5), 1080–1107. https://doi.org/10.1037/a0020367
Google Scholar | Crossref Carmel, D., Fairnie, J., Lavie, N. (2012). Weight and see: Loading working memory improves incidental identification of irrelevant faces. Frontiers in Psychology, 3, Article 286. https://doi.org/10.3389/fpsyg.2012.00286
Google Scholar | Crossref Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51(13), 1484–1525. https://doi.org/10.1016/j.visres.2011.04.012
Google Scholar | Crossref Cartwright-Finch, U., Lavie, N. (2007). The role of perceptual load in inattentional blindness. Cognition, 102(3), 321–340. https://doi.org/10.1016/j.cognition.2006.01.002
Google Scholar | Crossref Chabris, C. F., Weinberger, A., Fontaine, M., Simons, D. J. (2011). You do not talk about Fight Club if you do not notice Fight Club: Inattentional blindness for a simulated real-world assault. I-Perception, 2(2), 150–153. https://doi.org/10.1068/i0436
Google Scholar | SAGE Journals Chen, Z., Cave, K. R. (2016). Zooming in on the cause of the perceptual load effect in the go/no-go paradigm. Journal of Experimental Psychology: Human Perception and Performance, 42(8), 1072–1087. https://doi.org/10.1037/xhp0000168
Google Scholar | Crossref Chica, A. B., Bartolomeo, P. (2012). Attentional routes to conscious perception. Frontiers in Psychology, 3, Article 1. https://doi.org/10.3389/fpsyg.2012.00001
Google Scholar | Crossref Cohen, M. A., Cavanagh, P., Chun, M. M., Nakayama, K. (2012). The attentional requirements of consciousness. Trends in Cognitive Sciences, 16(8), 411–417. https://doi.org/10.1016/j.tics.2012.06.013
Google Scholar | Crossref Corbetta, M., Patel, G., Shulman, G. L. (2008). The reorienting system of the human brain: From environment to theory of mind. Neuron, 58(3), 306–324. https://doi.org/10.1016/J.NEURON.2008.04.017
Google Scholar | Crossref Corbetta, M., Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews. Neuroscience, 3(3), 201–215. https://doi.org/10.1038/nrn755
Google Scholar | Crossref Cosman, J. D., Vecera, S. P. (2010). Attentional capture by motion onsets is modulated by perceptual load. Attention, Perception, & Psychophysics, 72(8), 2096–2105. https://doi.org/10.3758/APP.72.8.2096
Google Scholar | Crossref Culham, J. C., Cavanagh, P., Kanwisher, N. G. (2001). Attention response functions: Characterizing brain areas using fMRI activation during parametric variations of attentional load. Neuron, 32(4), 737–745. https://doi.org/10.1016/S0896-6273(01)00499-8
Google Scholar | Crossref Deeks, J. J., Higgins, J. P., Altman, D. G. (2021). Chapter 10: Analysing data and undertaking meta-analyses. In Higgins, J. P., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M., Welch, V. (Eds.), Cochrane handbook for systematic reviews of interventions. Cochrane. https://training.cochrane.org/handbook/current/chapter-10#section-10-10
Google Scholar de Fockert, J. W . (2013). Beyond perceptual load and dilution: A review of the role of working memory in selective attention. Frontiers in Psychology, 4, Article 287. https://doi.org/10.3389/fpsyg.2013.00287
Google Scholar | Crossref de Fockert, J. W., Bremner, A. J. (2011). Release of inattentional blindness by high working memory load: Elucidating the relationship between working memory and selective attention. Cognition, 121(3), 400–408. https://doi.org/10.1016/j.cognition.2011.08.016
Google Scholar | Crossref de Fockert, J. W., Rees, G., Frith, C. D., Lavie, N. (2001). The role of working memory in visual selective attention. Science, 291(5509), 1803–1806. https://doi.org/10.1126/science.1056496
Google Scholar | Crossref de Fockert, J. W., Rees, G., Frith, C. D., Lavie, N. (2004). Neural correlates of attentional capture in visual search. Journal of Cognitive Neuroscience, 16(5), 751–759. https://doi.org/10.1162/089892904970762
Google Scholar | Crossref Dehaene, S., Changeux, J. P., Naccache, L., Sackur, J., Sergent, C. (2006). Conscious, preconscious, and subliminal processing: A testable taxonomy. Trends in Cognitive Sciences, 10(5), 204–211. https://doi.org/10.1016/j.tics.2006.03.007
Google Scholar | Crossref Dehaene, S., Naccache, L. (2001). Towards a cognitive neuroscience of consciousness: Basic evidence and a workspace framework. Cognition, 79(1–2), 1–37. https://doi.org/10.1016/S0010-0277(00)00123-2
Google Scholar | Crossref Desimone, R., Duncan, J. S. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18(1), 193–222. https://doi.org/10.1146/annurev.ne.18.030195.001205
Google Scholar | Crossref De Tommaso, M., Turatto, M. (2019). Learning to ignore salient distractors: Attentional set and habituation. Visual Cognition, 27(3–4), 214–226. https://doi.org/10.1080/13506285.2019.1583298
Google Scholar | Crossref Dixon, B. J., Daly, M. J., Chan, H., Vescan, A. D., Witterick, I. J., Irish, J. C. (2013). Surgeons blinded by enhanced navigation: The effect of augmented reality on attention. Surgical Endoscopy, 27(2), 454–461. https://doi.org/10.1007/s00464-012-2457-3
Google Scholar | Crossref Duncan, J., Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433–458. https://doi.org/10.1037/0033-295X.96.3.433
Google Scholar | Crossref Duncan, J., Humphreys, G. W. (1992). Beyond the search surface: Visual search and attentional engagement. Journal of Experimental Psychology: Human Perception and Performance, 18(2), 578–588. https://doi.org/10.1037//0096-1523.18.2.578
Google Scholar | Crossref Duval, S., Tweedie, R. (2000). Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics, 56(2), 455–463. https://doi.org/10.1111/j.0006-341X.2000.00455.x
Google Scholar | Crossref Eltiti, S., Wallace, D., Fox, E. (2005). Selective target processing: Perceptual load or distractor salience? Perception & Psychophysics, 67(5), 876–885. https://doi.org/10.3758/BF03193540
Google Scholar | Crossref Engle, R. W. (2002). Working memory capacity as executive attention. Current Directions in Psychological Science, 11(1), 19–23. https://doi.org/10.1111/1467-8721.00160
Google Scholar | SAGE Journals Ericson, J. M., Parr, S. A., Beck, M. R., Wolshon, B. (2017). Compensating for failed attention while driving. Transportation Research Part F: Traffic Psychology and Behaviour, 45, 65–74. https://doi.org/10.1016/j.trf.2016.11.015
Google Scholar | Crossref Fecteau, J., Munoz, D. (2006). Salience, relevance, and firing: A priority map for target selection. Trends in Cognitive Sciences, 10(8), 382–390. https://doi.org/10.1016/j.tics.2006.06.011
Google Scholar | Crossref Fiorentino, M., Uva, A. E., Gattullo, M., Debernardis, S., Monno, G. (2014). Augmented reality on large screen for interactive maintenance instructions. Computers in Industry, 65(2), 270–278. https://doi.org/10.1016/j.compind.2013.11.004
Google Scholar | Crossref Fitousi, D., Wenger, M. J. (2011). Processing capacity under perceptual and cognitive load: A closer look at load theory. Journal of Experimental Psychology: Human Perception and Performance, 37(3), 781–798. https://doi.org/10.1167/8.6.988
Google Scholar | Crossref Folk, C. L., Remington, R. W., Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 1030–1044. https://doi.org/10.1037/0096-1523.18.4.1030
Google Scholar | Crossref Folk, C. L., Remington, R. W., Wright, J. H. (1994). The structure of attentional control: Contingent attentional capture by apparent motion, abrupt onset, and color. Journal of Experimental Psychology: Human Perception and Performance, 20(2), 317–329. https://doi.org/10.1037/0096-1523.20.2.317
Google Scholar | Crossref Forster, S., Lavie, N. (2008). Failures to ignore entirely irrelevant distractors: The role of load. Journal of Experimental Psychology: Applied, 14(1), 73–83. https://doi.org/10.1037/1076-898X.14.1.73
Google Scholar | Crossref Fougnie, D., Marois, R. (2007). Executive working memory load induces inattentional blindness. Psychonomic Bulletin & Review, 14(1), 142–147. https://doi.org/10.3758/BF03194041
Google Scholar | Crossref Fukuda, K., Vogel, E. K. (2009). Human variation in overriding attentional capture. Journal of Neuroscience, 29(27), 8726–8733. https://doi.org/10.1523/JNEUROSCI.2145-09.2009
Google Scholar | Crossref Gaspar, J. M., McDonald, J. J. (2014). Suppression of salient objects prevents distraction in visual search. Journal of Neuroscience, 34(16), 5658–5666. https://doi.org/10.1523/JNEUROSCI.4161-13.2014
Google Scholar | Crossref Gaspelin, N., Leonard, C. J., Luck, S. J. (2015). Direct evidence for active suppression of salient-but-irrelevant sensory inputs. Psychological Science, 26(11), 1740–1750. https://doi.org/10.1177/0956797615597913
Google Scholar | SAGE Journals Gaspelin, N., Luck, S. J. (2018). Combined electrophysiological and behavioral evidence for the suppression of salient distractors. Journal of Cognitive Neuroscience, 30(9), 1265–1280. https://doi.org/10.1162/jocn_a_01279

Comments (0)

No login
gif