A reference tissue forward model for improved PET accuracy using within-scan displacement studies

1. Friston, KJ, Malizia, AL, Wilson, S, et al. Analysis of dynamic radioligand displacement or “activation” studies. J Cereb Blood Flow Metab 1997; 17: 80–93.
Google Scholar | SAGE Journals | ISI2. Carson, RE, Breier, A, de Bartolomeis, A, et al. Quantification of amphetamine-induced changes in [11C]raclopride binding with continuous infusion. J Cereb Blood Flow Metab 1997; 17: 437–447.
Google Scholar | SAGE Journals | ISI3. Lammertsma, AA, Hume, SP. Simplified reference tissue model for PET receptor studies. Neuroimage 1996; 4: 153–158.
Google Scholar | Crossref | Medline | ISI4. Gunn, RN, Lammertsma, AA, Hume, SP, et al. Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage 1997; 6: 279–287.
Google Scholar | Crossref | Medline | ISI5. Ichise, M, Liow, JS, Lu, JQ, et al. Linearized reference tissue parametric imaging methods: application to [11C]DASB positron emission tomography studies of the serotonin transporter in human brain. J Cereb Blood Flow Metab 2003; 23: 1096–1112.
Google Scholar | SAGE Journals | ISI6. Alpert, NM, Badgaiyan, RD, Livni, E, et al. A novel method for noninvasive detection of neuromodulatory changes in specific neurotransmitter systems. Neuroimage 2003; 19: 1049–1060.
Google Scholar | Crossref | Medline | ISI7. Mandeville, JB, Sander, CY, Jenkins, BG, et al. A receptor-based model for dopamine-induced fMRI signal. Neuroimage 2013; 75: 46–57.
Google Scholar | Crossref | Medline8. Sander, CY, Hooker, JM, Catana, C, et al. Imaging agonist-induced D2/D3 receptor desensitization and internalization in vivo with PET/fMRI. Neuropsychopharmacology 2016; 41: 1427–1436.
Google Scholar | Crossref | Medline9. Sander, CY, Hooker, JM, Catana, C, et al. Neurovascular coupling to D2/D3 dopamine receptor occupancy using simultaneous PET/functional MRI. Proc Natl Acad Sci USA 2013; 110: 11169–11174.
Google Scholar | Crossref | Medline10. Cosgrove, KP, Wang, S, Kim, SJ, et al. Sex differences in the brain's dopamine signature of cigarette smoking. J Neurosci 2014; 34: 16851–16855.
Google Scholar | Crossref | Medline11. Egerton, A, Mehta, MA, Montgomery, AJ, et al. The dopaminergic basis of human behaviors: a review of molecular imaging studies. Neurosci Biobehav Rev 2009; 33: 1109–1132.
Google Scholar | Crossref | Medline | ISI12. Narendran, R, Mason, NS, Laymon, CM, et al. A comparative evaluation of the dopamine D(2/3) agonist radiotracer [11C](-)-N-propyl-norapomorphine and antagonist [11C]raclopride to measure amphetamine-induced dopamine release in the human striatum. J Pharmacol Exp Ther 2010; 333: 533–539.
Google Scholar | Crossref | Medline | ISI13. Hume, SP, Myers, R, Bloomfield, PM, et al. Quantitation of carbon-11-labeled raclopride in rat striatum using positron emission tomography. Synapse 1992; 12: 47–54.
Google Scholar | Crossref | Medline | ISI14. Lammertsma, AA, Bench, CJ, Hume, SP, et al. Comparison of methods for analysis of clinical [11C]raclopride studies. J Cereb Blood Flow Metab 1996; 16: 42–52.
Google Scholar | SAGE Journals | ISI15. Mandeville, JB, Sander, CY, Wey, HY, et al. A regularized full reference tissue model for PET neuroreceptor mapping. Neuroimage 2016; 139: 405–414.
Google Scholar | Crossref | Medline16. Slifstein, M, Parsey, RV, Laruelle, M. Derivation of [(11)C]WAY-100635 binding parameters with reference tissue models: effect of violations of model assumptions. Nucl Med Biol 2000; 27: 487–492.
Google Scholar | Crossref | Medline | ISI17. Salinas, CA, Searle, GE, Gunn, RN. The simplified reference tissue model: model assumption violations and their impact on binding potential. J Cereb Blood Flow Metab 2015; 35: 304–311.
Google Scholar | SAGE Journals | ISI18. Cho, SS, Yoon, EJ, Kim, SE. Asymmetry of dopamine D2/3 receptor availability in dorsal putamen and body mass index in non-obese healthy males. Exp Neurobiol 2015; 24: 90–94.
Google Scholar | Crossref | Medline19. Arsenault, JT, Rima, S, Stemmann, H, et al. Role of the primate ventral tegmental area in reinforcement and motivation. Curr Biol 2014; 24: 1347–1353.
Google Scholar | Crossref | Medline20. Arsenault, JT, Vanduffel, W. Ventral midbrain stimulation induces perceptual learning and cortical plasticity in primates. Nat Commun 2019; 10: 3591–3508.
Google Scholar | Crossref | Medline21. Murris, SR, Arsenault, JT, Raman, R, et al. Electrical stimulation of the macaque ventral tegmental area drives category-selective learning without attention. Neuron 2021; 109: 1381–1395.
Google Scholar | Crossref | Medline22. Murris, SR, Arsenault, JT, Vanduffel, W. Frequency- and state-dependent network effects of electrical stimulation targeting the ventral tegmental area in macaques. Cereb Cortex 2020; 30: 4281–4296.
Google Scholar | Crossref | Medline23. Schluter, EW, Mitz, AR, Cheer, JF, et al. Real-time dopamine measurement in awake monkeys. PLoS One 2014; 9: e98692.
Google Scholar | Crossref | Medline24. Savitzky, A, Golay, MJE. Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 1964; 36: 1627–1639.
Google Scholar | Crossref | ISI25. Innis, RB, Cunningham, VJ, Delforge, J, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 2007; 27: 1533–1539.
Google Scholar | SAGE Journals | ISI26. Wu, Y, Carson, RE. Noise reduction in the simplified reference tissue model for neuroreceptor functional imaging. J Cereb Blood Flow Metab 2002; 22: 1440–1452.
Google Scholar | SAGE Journals | ISI27. Sander, CY, Keil, B, Mareyam, A, et al. Low 511keV-attenuation array coil setup for simultaneous PET/MR imaging of the monkey brain. In: Proc. Intl. Soc. Mag. Reson. Med. 21. Salt Lake City, Utah, 2013, p. 0826.
Google Scholar28. Mandeville, JB. IRON fMRI measurements of CBV and implications for BOLD signal. Neuroimage 2012; 62: 1000–1008.
Google Scholar | Crossref | Medline29. Griswold, MA, Jakob, PM, Heidemann, RM, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002; 47: 1202–1210.
Google Scholar | Crossref | Medline | ISI30. Kolb, A, Wehrl, HF, Hofmann, M, et al. Technical performance evaluation of a human brain PET/MRI system. Eur Radiol 2012; 22: 1776–1788.
Google Scholar | Crossref | Medline | ISI31. Love, SA, Marie, D, Roth, M, et al. The average baboon brain: MRI templates and tissue probability maps from 89 individuals. Neuroimage 2016; 132: 526–533.
Google Scholar | Crossref | Medline32. Rohlfing, T, Kroenke, CD, Sullivan, EV, et al. The INIA19 template and NeuroMaps atlas for primate brain image parcellation and spatial normalization. Front Neuroinform 2012; 6: 27.
Google Scholar | Crossref | Medline33. Worsley, KJ, Liao, CH, Aston, J, et al. A general statistical analysis for fMRI data. Neuroimage 2002; 15: 1–15.
Google Scholar | Crossref | Medline | ISI34. Mawlawi, O, Martinez, D, Slifstein, M, et al. Imaging human mesolimbic dopamine transmission with positron emission tomography: I. Accuracy and precision of D(2) receptor parameter measurements in ventral striatum. J Cereb Blood Flow Metab 2001; 21: 1034–1057.
Google Scholar | SAGE Journals | ISI35. Sander, CY, Arsenault, J, Rosen, BR, et al. Functional signaling contributions of D1 and D2 dopamine receptors during VTA stimulation in non-human primates. In: Proc. Intl. Soc. Mag. Reson. Med. 27. 2019, p. 4360.
Google Scholar36. Zubair, M, Murris, SR, Isa, K, et al. Divergent whole brain projections from the ventral midbrain in macaques. Cereb Cortex 2021; 31: 2913–2931.
Google Scholar | Crossref | Medline37. Delforge, J, Syrota, A, Bendriem, B. Concept of reaction volume in the in vivo ligand-receptor model. J Nucl Med 1996; 37: 118–125.
Google Scholar | Medline | ISI

Comments (0)

No login
gif