Opinion on the Optimal Histologic Evaluation of the Bone Marrow in Nonclinical Toxicity Studies

1. Bloom, JC. Principles of hematotoxicology: laboratory assessment and interpretation of data. Toxicol Pathol. 1993;21(2):130–134. doi:10.1177/019262339302100203
Google Scholar | SAGE Journals | ISI2. Aulbach, A, Cregar, L. Principles of toxicologic clinical pathology. In: Steinbach, T, Patrick, D, Cosenza, M, eds. Toxicologic Pathology for Non-Pathologists. Humana; 2019:689–743.
Google Scholar | Crossref3. Travlos, GS . Histopathology of bone marrow. Toxicol Pathol. 2006;34(5):566–598. doi:10.1080/01926230600964706
Google Scholar | SAGE Journals | ISI4. Reagan, WJ, Irizarry-Rovira, A, Poitout-Belissent, F, et al. Best practices for evaluation of bone marrow in nonclinical toxicity studies. Toxicol Pathol. 2011;39(2):435–448. doi:10.1177/0192623310396907
Google Scholar | SAGE Journals | ISI5. Rebar, AH . General responses of the bone marrow to injury. Toxicol Pathol. 1993;21(2):118–129. doi:10.1177/019262339302100202
Google Scholar | SAGE Journals | ISI6. Travlos, GS . Normal structure, function, and histology of the bone marrow. Toxicol Pathol. 2006;34(5):548–565. doi:10.1080/01926230600939856
Google Scholar | SAGE Journals | ISI7. Cora, MC, Latimer, K, Travlos, GS. Bone marrow. In: Suttie, AW , ed. Boorman’s Pathology of the Rat. 2nd ed. Academic Press; 2018:495–519.
Google Scholar | Crossref8. Gwaltney-Brant, S . Blood and bone marrow toxicity biomarkers. In: Gupta, RC , ed. Biomarkers in Toxicology. Academic Press; 2014:361–371.
Google Scholar | Crossref9. Wang, H, Leng, Y, Gong, Y. Bone marrow fat and hematopoiesis. Front Endocrinol (Lausanne). 2018;9:694. Published November 28, 2018. doi:10.3389/fendo.2018.00694
Google Scholar | Crossref | Medline10. Willard-Mack, CL, Elmore, SA, Hall, WC, et al. Nonproliferative and proliferative lesions of the rat and mouse hematolymphoid system. Toxicol Pathol. 2019;47(6):665–783. doi:10.1177/0192623319867053
Google Scholar | SAGE Journals | ISI11. Levin, S, Semler, D, Ruben, Z. Effects of two weeks of feed restriction on some common toxicologic parameters in Sprague-Dawley rats. Toxicol Pathol. 1993;21(1):1–14. doi:10.1177/019262339302100101
Google Scholar | SAGE Journals | ISI12. Nakajima, K, Crisma, AR, Silva, GB, Rogero, MM, Fock, RA, Borelli, P. Malnutrition suppresses cell cycle progression of hematopoietic progenitor cells in mice via cyclin D1 down-regulation. Nutrition. 2014;30(1):82–89. doi:10.1016/j.nut.2013.05.029
Google Scholar | Crossref | Medline13. Takamatsu, K, Yamashita, H, Satake, S, Kazusa, K, Tabata, H, Nishikata, T. Effects of four-week feed restriction on toxicological parameters in beagle dogs. Exp Anim. 2015;64(3):269–280. doi:10.1538/expanim.14-0098
Google Scholar | Crossref | Medline14. Cleary, BS, Gaudiani, JL, Mehler, PS. Interpreting the complete blood count in anorexia nervosa. Eat Disord. 2010;18(2):132–139. doi:10.1080/10640260903585540
Google Scholar | Crossref | Medline15. Hütter, G, Ganepola, S, Hofmann, WK. The hematology of anorexia nervosa. Int J Eat Disord. 2009;42(4):293–300. doi:10.1002/eat.20610
Google Scholar | Crossref | Medline16. Everds, NE, Snyder, PW, Bailey, KL, et al. Interpreting stress responses during routine toxicity studies: a review of the biology, impact, and assessment. Toxicol Pathol. 2013;41(4):560–614. doi:10.1177/0192623312466452
Google Scholar | SAGE Journals | ISI17. Cline, JM, Maronpot, RR. Variations in the histologic distribution of rat bone marrow cells with respect to age and anatomic site. Toxicol Pathol. 1985;13(4):349–355. doi:10.1177/019262338501300411
Google Scholar | SAGE Journals18. Ramaiah, L, Bounous, DI, Elmore, SA. Hematopoietic system. In: Haschek, WM, Rousseaux, CG, Wallig, MA, eds. Haschek and Rousseaux’s Handbook of Toxicologic Pathology. 3rd ed. Academic Press; 2013:1863–1933.
Google Scholar | Crossref19. Woicke, J, Al-Haddawi, MM, Bienvenu, JG, et al. International harmonization of nomenclature and diagnostic criteria (INHAND): nonproliferative and proliferative lesions of the dog. Toxicol Pathol. 2021;49(1):5–109. doi:10.1177/0192623320968181
Google Scholar | SAGE Journals | ISI20. Cora, MC, Travlos, GS 2014. Bone marrow. In: Cesta, MF, Herbert, RA, Brix, A, Malarkey, DE, Sills, RC, eds. National Toxicology Program Nonneoplastic Lesion Atlas. Updated June 23, 2014. Accessed June 14, 2021. https://ntp.niehs.nih.gov/nnl/hematopoietic/bone_marrow/index.htm.
Google Scholar21. Martin, RA, Brott, DA, Zandee, JC, McKeel, MJ. Differential analysis of animal bone marrow by flow cytometry. Cytometry. 1992;13(6):638–643. doi:10.1002/cyto.990130612
Google Scholar | Crossref | Medline22. Rehg, JE, Bush, D, Ward, JM. The utility of immunohistochemistry for the identification of hematopoietic and lymphoid cells in normal tissues and interpretation of proliferative and inflammatory lesions of mice and rats. Toxicol Pathol. 2012;40(2):345–374. doi:10.1177/0192623311430695
Google Scholar | SAGE Journals | ISI23. Glassy, EF . Megakaryocyte or precursor, normal and megakaryocyte maturation. In: Glassy, EF , ed. Color Atlas of Hematology: An Illustrated Field Guide Based on Proficiency Testing. College of American Pathologists; 1998:188–191.
Google Scholar24. Skydsgaard, M, Dincer, Z, Haschek, WM, et al. International harmonization of nomenclature and diagnostic criteria (INHAND): nonproliferative and proliferative lesions of the minipig. Toxicol Pathol. 2021;49(1):110–228. doi:10.1177/0192623320975373
Google Scholar | SAGE Journals | ISI25. Carter, CM, Cregar, LC, Aulbach, AD. Cytological bone marrow cell differential counts and morphologic findings in healthy cynomolgus monkeys (Macaca fascicularis) from nonclinical toxicology studies. Toxicol Pathol. 2017;45(2):267–274. doi:10.1177/0192623316677067
Google Scholar | SAGE Journals | ISI26. Haley, PJ . Lymphoid system. In: Sahota, PS, Popp, JA, Hardisty, JF, Gopinath, C, eds. Toxicologic Pathology Nonclinical Safety Assessment. CRC Press; 2013.
Google Scholar27. Frith, CH, Ward, JM, Chandra, M. The morphology, immunohistochemistry, and incidence of hematopoietic neoplasms in mice and rats. Toxicol Pathology. 1993;21(2):206–218. doi:10.1177/019262339302100213
Google Scholar | SAGE Journals | ISI28. Kozlowski, C, Brumm, J, Cain, G. An automated image analysis method to quantify veterinary bone marrow cellularity on H&E sections [published correction appears in. Toxicol Pathol. 2018;46(3):324–335. doi:10.1177/0192623318766457
Google Scholar | SAGE Journals | ISI29. Kozlowski, C, Fullerton, A, Cain, G, Katavolos, P, Bravo, J, Tarrant, JM. Proof of concept for an automated image analysis method to quantify rat bone marrow hematopoietic lineages on H&E sections. Toxicol Pathol. 2018;46(3):336–347. doi:10.1177/0192623318766458
Google Scholar | SAGE Journals | ISI30. Criswell, KA, Bock, JH, Wildeboer, SE, Johnson, K, Giovanelli, RP. Validation of Sysmex XT-2000iV generated quantitative bone marrow differential counts in untreated Wistar rats. Vet Clin Pathol. 2014;43(2):125–136. doi:10.1111/vcp.12132
Google Scholar | Crossref | Medline31. Criswell, KA, Bock, JH, Johnson, K, Criswell, RA, Giovanelli, RP. Validation of Sysmex XT-2000iV analyzer-generated quantitative bone marrow differential counts in cynomolgus monkeys, beagle dogs, and CD-1 mice. Vet Clin Pathol. 2018;47(4):539–555. doi:10.1111/vcp.12672
Google Scholar | Crossref | Medline32. Criswell, KA, Bock, JH, Wildeboer, SE, Johnson, K, Giovanelli, RP. Comparison of the Sysmex XT-2000iV and microscopic bone marrow differential counts in Wistar rats treated with cyclophosphamide, erythropoietin, or serial phlebotomy. Vet Clin Pathol. 2014;43(2):137–153. doi:10.1111/vcp.12149
Google Scholar | Crossref | Medline33. Pineault, N, Robert, A, Cortin, V, Boyer, L. Ex vivo differentiation of cord blood stem cells into megakaryocytes and platelets. Methods Mol Biol. 2013;946:205–224. doi:10.1007/978-1-62703-128-8_13
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif