1. Arasi S, Pajno GB, Panasiti I, Sandoval M, Alvaro-Lozano M. Allergen Immunotherapy in children with respiratory allergic diseases. Minerva Pediatr. 2020;72(5):343–357. doi:
10.23736/S0026-4946.20.05959-9 Google Scholar |
Crossref2. Chen L, Lei L, Cai Y, Li T. Specific sublingual immunotherapy in children with perennial rhinitis: a systemic review and meta-analysis. Int Forum Allergy Rhinol. 2020;10(11):1226–1235. doi:
10.1002/alr.22589 Google Scholar |
Crossref3. Caffarelli, C, Cangemi, J, Mastrorilli, C, Giannetti, A, Ricci, G. Allergen-specific immunotherapy for inhalant allergens in children. Curr Pediatr Rev. 2020;16(2):129–139. doi:
10.2174/1573396315666191021104003 Google Scholar |
Crossref |
Medline4. Leonardi, S, Castro, A, Lanzafame, A, et al. Safety and efficacy of sublingual specific immunotherapy to house dust mites using a different dosage: a pilot study. J Biol Regul Homeost Agents. 2015;29(2 Suppl 1):84–88.
Google Scholar |
Medline5. Lanzafame, A, Parisi, GF, Di Dio, G, La Rosa, M. Immune system network in allergic diseases during sublingual immunotherapy: the role of oral mucosal tissue. J Pediatr Biochem. 2013;3(2):93–97.
Google Scholar6. La Rosa, M, Lionetti, E, Leonardi, S, et al. Specific immunotherapy in children: the evidence. Int J Immunopathol Pharmacol. 2011;24(4 Suppl):69–78. doi:
10.1177/03946320110240S413 Google Scholar |
SAGE Journals7. Miraglia Del Giudice, M, Licari, A, Brambilla, I, Tosca, MA, Ciprandi, G. Allergen immunotherapy in pediatric asthma: a pragmatic point of view. Children (Basel). 2020;7(6):58. Published 2020 Jun 8. doi:
10.3390/children7060058 Google Scholar |
Crossref8. Liu, W, Zeng, Q, Luo, R. Predictors for short-term efficacy of allergen-specific sublingual immunotherapy in children with allergic rhinitis. Mediators Inflamm. 2020;2020:1847061. Published 2020 Apr 21. doi:
10.1155/2020/1847061 Google Scholar |
Crossref |
Medline9. Parisi, GF, Papale, M, Tardino, L, Nenna, R, Midulla, F, Leonardi, S. Biomarkers in pediatric lung diseases including cystic fibrosis. Curr Respir Med Rev. 2019;15(3):163–173. doi:
10.2174/1573398X15666190521112824 Google Scholar |
Crossref10. Pappalardo, MG, Parisi, GF, Tardino, L, et al. Measurement of nitric oxide and assessment of airway diseases in children: an update. Minerva Pediatr. 2019;71(6):524–532. doi:
10.23736/S0026-4946.19.05513-0 Google Scholar |
Crossref11. Ai, T, Wang, L, Luo, R, et al. Effects of sublingual-specific immunotherapy on pulmonary function and exhaled nitric oxide levels in asthmatic children with and without allergic rhinitis. Transl Pediatr. 2020;9(5):686–694. doi:
10.21037/tp-20-322. PMID: 33209732; PMCID: PMC7658774.
Google Scholar |
Crossref |
Medline12. Wang, L, Ai, T, Luo, R, et al. Effects of sublingual duster mite drops on lung function and exhaled nitric oxide in children with multiple and single allergic respiratory diseases. Can Respir J. 2020;2020:7430936. Published 2020 Nov 4. doi:
10.1155/2020/7430936. PMID: 33204377; PMCID: PMC7657694.
Google Scholar |
Crossref |
Medline13. Tsai, YG, Yang, KD, Wen, YS, Hung, CH, Chien, JW, Lin, CY. Allergen-specific immunotherapy enhances CD8+CD25+CD137+regulatory T cells and decreases nasal nitric oxide. Pediatr Allergy Immunol. 2019;30(5):531–539. doi:
10.1111/pai.13061tsai Google Scholar |
Crossref |
Medline14. Gelardi, M, Luigi Marseglia, G, Licari, A, et al. Nasal cytology in children: recent advances. Ital J Pediatr. 2012;38:51. Published 2012 Sep 25. doi:
10.1186/1824-7288-38-51. PMID: 23009215; PMCID: PMC3533990.
Google Scholar |
Crossref |
Medline15. Sakurai, D, Yonekura, S, Iinuma, T, et al. Sublingual immunotherapy for allergic rhinitis: subjective versus objective tools to evaluate its success. Rhinology. 2016;54(3):221–230. doi:
10.4193/Rhin15.223. PMID: 27107025.
Google Scholar |
Crossref |
Medline16. Ciprandi, G, Tosca, MA. Sublingual immunotherapy affects transforming growth factor-beta and nasal eosinophils. Clin Exp Allergy. 2010;40(9):1431–1432. doi:
10.1111/j.1365-2222.2010.03579.x. author reply 1432. PMID: 20701617.
Google Scholar |
Crossref |
Medline17. Klimek, L, Bergmann, KC, Biedermann, T, et al. Visual analogue scales (VAS): measuring instruments for the documentation of symptoms and therapy monitoring in cases of allergic rhinitis in everyday health care: position paper of the German society of allergology (AeDA) and the German society of allergy and clinical immunology (DGAKI), ENT section, in collaboration with the working group on clinical immunology, allergology and environmental medicine of the German society of otorhinolaryngology, head and neck surgery (DGHNOKHC). Allergo J Int. 2017;26(1):16–24. doi:
10.1007/s40629-016-0006-7 Google Scholar |
Crossref |
Medline18. American Thoracic Society; European Respiratory Society . ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am J Respir Crit Care Med. 2005;171(8):912–930. doi:
10.1164/rccm.200406-710ST Google Scholar |
Crossref |
Medline19. Lozano, NA, Saranz, RJ, Lozano, A, et al. Análisis de la citología nasal en niños y adolescentes con rinitis [analysis of nasal cytology in children and adolescents with rhinitis]. Rev Fac Cien Med Univ Nac Cordoba. 2017;74(2):126–133.
Google Scholar |
Crossref |
Medline20. Graham BL, Steenbruggen I, Miller MR, et al. Standardization of spirometry 2019 update. An official American thoracic society and european respiratory society technical statement. Am J Respir Crit Care Med. 2019;200(8):e70-e88. doi:
10.1164/rccm.201908-1590ST Google Scholar |
Crossref21. Alterio, T, Manti, S, Colavita, L, et al. SUBLINGUAL IMMUNOTHERAPY IN CHILDREN: sTATE OF ART. J Biol Regul Homeost Agents. 2015;29(2 Suppl 1):120–124.
Google Scholar |
Medline22. Cuppari, C, Leonardi, S, Manti, S, et al. Allergen immunotherapy, routes of administration and cytokine networks: an update. Immunotherapy. 2014;6(6):775–786. doi:
10.2217/imt.14.47 Google Scholar |
Crossref |
Medline23. Lee, KJ, Cho, SH, Lee, SH, et al. Nasal and exhaled nitric oxide in allergic rhinitis. Clin Exper Otorhinolaryngol. 2012;5(4):228–233. doi:
10.3342/ceo.2012.5.4.228 Google Scholar |
Crossref |
Medline24. Manna, A, Montella, S, Maniscalco, M, Maglione, M, Santamaria, F. Clinical application of nasal nitric oxide measurement in pediatric airway diseases. Pediatr Pulmonol. 2015;50(1):85–99. doi:
10.1002/ppul.23094 Google Scholar |
Crossref |
Medline25. Liu, D, Huang, Z, Huang, Y, Yi, X, Chen, X. Measurement of nasal and fractional exhaled nitric oxide in children with upper airway inflammatory disease: preliminary results. Int J Pediatr Otorhinolaryngol. 2015;79(12):2308–2311. doi:
10.1016/j.ijporl.2015.10.033 Google Scholar |
Crossref |
Medline26. Wang, PP, Wang, GX, Ge, WT, Tang, LX, Zhang, J, Ni, X. Nasal nitric oxide in allergic rhinitis in children and its relationship to severity and treatment. Allergy Asthma Clin Immunol. 2017;13:20. Published 2017 Apr 4. doi:
10.1186/s13223-017-0191-z. PMID: 28396691; PMCID: PMC5381136.
Google Scholar |
Crossref |
Medline27. Parisi GF, Leonardi S, Ciprandi G, et al. Cetirizine use in childhood: an update of a friendly 30-year drug. Clin Mol Allergy. 2020;18:2. Published 2020 Feb 26. doi:
10.1186/s12948-020-00118-5 Google Scholar |
Crossref28. Parisi, GF, Licari, A, Papale, M, et al. Antihistamines: aBC for the paediatricians. Pediatr Allergy Immunol. 2020;31(Suppl 24):34–36. doi:
10.1111/pai.13152 Google Scholar |
Crossref |
Medline29. Parisi, GF, Leonardi, S, Ciprandi, G, et al. Antihistamines in children and adolescents: a practical update. Allergol Immunopathol (Madr. 2020;48[6]:753–762. doi:
10.1016/j.aller.2020.02.005. Epub 2020 May 21. PMID: 32448753.
Google Scholar |
Crossref |
Medline30. Jerzynska, J, Stelmach, W, Balcerak, J, et al. Effect of lactobacillus rhamnosus GG and vitamin D supplementation on the immunologic effectiveness of grass-specific sublingual immunotherapy in children with allergy. Allergy Asthma Proc. 2016;37(4):324–334. doi:
10.2500/aap.2016.37.3958 Google Scholar |
Crossref |
Medline31. Pulvirenti, G, Parisi, GF, Manti, S, et al. The immunomodulatory role of vitamin D in respiratory diseases. Curr Respir Med Rev. 2019;15(3):238–245. doi:
10.2174/1573398X15666191114144230 Google Scholar |
Crossref32. Vitaliti, G, Leonardi, S, Miraglia Del Giudice, M, et al. Mucosal immunity and sublingual immunotherapy in respiratory disorders. J Biol Regul Homeost Agents. 2012;26(1 Suppl):S85–S93.
Google Scholar |
Medline33. Leonardi, S, Arena, A, Bruno, ME, et al. Olea sublingual allergoid immunotherapy administered with two different treatment regimens. Allergy Asthma Proc. 2010;31(2):e25–e29. doi:
10.2500/aap.2010.31.3316 Google Scholar |
Crossref |
Medline34. Poddighe, D, Gelardi, M, Licari, A, Del Giudice, MM, Marseglia, GL. Non-allergic rhinitis in children: epidemiological aspects, pathological features, diagnostic methodology and clinical management. World J Methodol. 2016;6(4):200–213. doi:
10.5662/wjm.v6.i4.200. PMID: 28074172; PMCID: PMC5183989.
Google Scholar |
Crossref |
Medline35. Meltzer, EO, Orgel, HA, Rogenes, PR, Field, EA. Nasal cytology in patients with allergic rhinitis: effects of intranasal fluticasone propionate. J Allergy Clin Immunol. 1994;94(4):708–715. doi:
10.1016/0091-6749(94)90178-3. PMID: 7930304.
Google Scholar |
Crossref |
Medline36. Gelardi, M, Iannuzzi, L, Quaranta, N. Intranasal sodium hyaluronate on the nasal cytology of patients with allergic and nonallergic rhinitis. Int Forum Allergy Rhinol. 2013;3(10):807–813. doi:
10.1002/alr.21193. Epub 2013 Jun 25. PMID: 23801461.
Google Scholar |
Crossref |
Medline37. Barber, D, Escribese, MM. Predictive biomarkers in allergen specific immunotherapy. Allergol Immunopathol (Madr. 2017;45[Suppl 1]):12–14. doi:
10.1016/j.aller.2017.09.003 Google Scholar |
Crossref |
Medline
Comments (0)