Porosity Pattern of 3D Chitosan/Bioactive Glass Tissue Engineering Scaffolds Prepared for Bone Regeneration

[1] Duarte ARC, Mano JF, Reis RL. Preparation of Chitosan Scaffolds for Tissue Engineering using Supercritical Fluid Technology. Mater Sci Forum 2010; 636-7: 22-5.
[2] Mano JF, Silva GA, Azevedo HS, et al. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 2007; 4(17): 999-1030.
[3] Santos TC, Marques AP, Silva SS, et al. Advances in Biochemical Engineering Science. J Biotechnol 2007; 132(2): 218-26.
[4] Venkatesan J, Kim SK. Chitosan composites for bone tissue engineering--an overview. Mar Drugs 2010; 8(8): 2252-66. [Review].
[5] Tuzlakoglu K, Alves CM, Mano JF, Reis RL. Production and characterization of chitosan fibers and 3-D fiber mesh scaffolds for tissue engineering applications. Macromol Biosci 2004; 4(8): 811-9.
[6] Prabaharan M, Rodriguez-Perez MA, de Saja JA, Mano JF. Preparation and characterization of poly(L-lactic acid)-chitosan hybrid scaffolds with drug release capability. J Biomed Mater Res B Appl Biomater 2007; 81(2): 427-34.
[7] Shi J, Alves NM, Mano JF. Chitosan coated alginate beads containing poly(N-isopropylacrylamide) for dual-stimuli-responsive drug release. J Biomed Mater Res B Appl Biomater 2008; 84(2): 595-603.
[8] J Bioact Compat Polym 2006; 21: 351-68.
[9] Ana Rita C. Duartea, João F. Manoa, Rui L. Reis. The role of organic solvent on the preparation of chitosan scaffolds by supercritical assisted phase inversion. J Supercrit Fluids 2012; 72: 326-32.
[10] Mi FL, Shyu SS, Wu YB, Lee ST, Shyong JY, Huang RN. Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing 2001; 22(2): 165-73.
[11] Escobar-Sierra DM, Posada-Carvajal JS, Atehortúa-Soto DL. Fabrication of chitosan/bioactive glass composite scaffolds for medical applications. University of Antioquia Redin 2016; 80: 38-47.
[12] Lemosa EMF, Patrício PSO, Pereira MM. 3D Nanocomposite Chitosan/Bioactive Glass Scaffolds Obtained Using Two Different Routes: An Evaluation of the Porous Structure and Mechanical Properties Quim Nova 2016; 1-5. [13] Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006; 27(18): 3413-31.
[14] Hench LL. The story of Bioglass. J Mater Sci Mater Med 2006; 17(11): 967-78. [R].
[15] Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J Biomed Mater Res 2001; 55(2): 151-7.
[16] Guarino V, Causa F, Ambrosio L. Bioactive scaffolds for bone and ligament tissue. Expert Rev Med Devices 2007; 4(3): 405-18.
[17] Hutmacher DW, Schantz JT, Lam CXF, Tan KC, Lim TC. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med 2007; 1(4): 245-60.
[18] Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 2011; 32(11): 2757-74.
[19] Hassane Oudadesse E. Wers, X. V. Bui, C.Roiland, B. Bureau, I.Akhiyat, A.Mostafa, H.Chaair, H.Benhayoune, J. Faure, P. Pellen-Mussi. Chitosan effects on glass matrices evaluated by biomaterial. MAS-NMR and biological investigations. Korean J Chem Eng 2013; 30(9): 1775-83.
[20] Zhao Y, Liao Y. Discrimination methods and demodulation techniques for fiber Bragg grating sensors. Opt Lasers Eng 2004; 41(1): 1-18.
[21] Hoda GH. Fabrication of a Bioactive Composite Scaffold for Drug Delivery. PhD thesis, Biomaterials Department, Faculty of Oral and Dental Medicine, Cairo University, Egypt 2014. [22] Webb PA, Orr C, Camp RW, Olivier JP, Yunes YS. Analytical methods in fine particle technology 1997; 155-91. [23] Rigby SP, Fletcher RS, Riley SN. Characterization of porous solids using integrated nitrogen sorption and mercury porosimetry. Chem Eng Sci 2004; 59(1): 41-51.
[24] Nettles DL. Evaluation of chitosan as a cell scaffolding material for cartilage tissue engineering. Master’s Thesis, Mississipi State University, USA 2001. [25] Machado DFM, Bertassoni LE, Souza EM, Almeida JB, Rached RN. Effect of additives on the compressive strength and setting time of a Portland cement. Braz Oral Res 2010; 24(2): 158-64.
[26] Bui XV, Oudadesse H, Le Gal Y, Mostafa A, Cathelineau G. Microspheres of Chitosan-Bioactive Glass for Application in Orthopedic Surgery In vitro experiment 2011. [27] Fernandes HR, Gaddam A, Rebelo A, Brazete D, Stan GE, Ferreira JMF. Bioactive Glasses and Glass-Ceramics for Healthcare Applications in Bone Regeneration and Tissue Engineering. Materials (Basel) 2018; 11(12): 1-57.
[28] Stähli C, James-Bhasin M, Hoppe A, Boccaccini AR, Nazhat SN. Effect of ion release from Cu-doped 45S5 Bioglass® on 3D endothelial cell morphogenesis. Acta Biomater 2015; 19: 15-22.
[29] Faqhiri H, Hannula M, Kellomäki M, Calejo MT, Massera J. Effect of Melt-Derived Bioactive Glass Particles on the Properties of Chitosan Scaffolds. J Funct Biomater 2019; 10(3): 1-15. [Article].
[30] Correia CO, Leite ÁJ, Mano JF. Chitosan/bioactive glass nanoparticles scaffolds with shape memory properties. Carbohydr Polym 2015; 123: 39-45.
[31] Gritsch L, Maqbool M, Mouriño V, et al. Chitosan/hydroxyapatite composite bone tissue engineering scaffolds with dual and decoupled therapeutic ion delivery: copper and strontium. J Mater Chem B Mater Biol Med 2019; 7(40): 6109-24.
[32] Dietrich E, Oudadesse H, Lucas-Girot A, Mami M. In vitro bioactivity of melt-derived glass 46S6 doped with magnesium. J Biomed Mater Res A 2009; 88(4): 1087-96.
[33] Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 2010; 62(1): 83-99.
[34] Ahmadi Z. Moztarzadeh. Synthesizing and Characterizing of Gelatin-Chitosan-Bioactive Glass [58s] Scaffolds for Bone Tissue Engineering. Springer Science & Business Media BV. Silicon 2018; 10: 1393-402.
[35] Kim SE, Song SH, Yun YP, et al. The effect of immobilization of heparin and bone morphogenic protein-2 (BMP-2) to titanium surfaces on inflammation and osteoblast function. Biomaterials 2011; 32(2): 366-73.
[36] Jones JR. Review of bioactive glass: from Hench to hybrids. Acta Biomater 2013; 9(1): 4457-86.
[37] Doostmohammadi A, Monshi A, Fathi MH, Braissant O. A comparative Physico-chemical study of bioactive glass and bone-derived hydroxyapatite. Ceram Int 2011; 37: 1601-7.
[38] Huang W, Rahaman MN, Day DE, Li Y. Mechanisms of converting silicate, borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solution. Phys Chem Glasses Europ J Glass Sci Technol B 2006; 47: 647-58. [39] Sun F, Zhou H, Lee J. Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater 2011; 7(11): 3813-28.
[40] Maji K, Dasgupta S, Pramanik K, Bissoyi A. Preparation and Evaluation of Gelatin-Chitosan-Nanobioglass 3D Porous Scaffold for Bone Tissue Engineering. Research Article Hindawi Publishing Corporation International Journal of Biomaterials 2016; Article ID 9825659: 1-14. [41] Mota J, Yu N, Caridade SG, et al. Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration. Acta Biomater 2012; 8(11): 4173-80.
[42] Tsigkou O, Labbaf S, Stevens MM, Porter AE, Jones JR. Monodispersed bioactive glass submicron particles and their effect on bone marrow and adipose tissue-derived stem cells. Adv Healthc Mater 2014; 3(1): 115-25.
[43] Kaur G, Pandey OP, Singh K, Homa D, Scott B, Pickrell G. A review of bioactive glasses: Their structure, properties, fabrication and apatite formation. J Biomed Mater Res A 2014; 102(1): 254-74.
[44] Ding H, Zhao C-J, Cui X, et al. A novel injectable borate bioactive glass cement as an antibiotic delivery vehicle for treating osteomyelitis. PLoS One 2014; 9(1)e85472
[45] Bottinoa MC. Thomas bV, Schmidtc G, Vohrab Y.K., ChuaT.M.G, Kowolikd M.J., Janowski G.M. Recent advances in the development of GTR/GBR membranes for periodontal regeneration-A materials perspective-Review. Dent Mater 2012; 28: 703-21.
[46] Verron E, Bouler JM, Guicheux J. Controlling the biological function of calcium phosphate bone substitutes with drugs. Acta Biomater 2012; 8(10): 3541-51.
[47] Gomes S, Leonor IB, Mano JF, Reis RL, Kaplan DL. Natural and genetically engineered proteins for tissue engineering. Prog Polym Sci 2012; 37(1): 1-17.
[48] Kim B, Zhang X, Borteh H, Li Z, Guan J, Zhao Y. Fabrication of porous microtent structures toward an in vitro endothelium model. J Micromech Microeng 2012; 22. [8].

留言 (0)

沒有登入
gif