1. Stern, KW, McElhinney, DB, Gauvreau, K, Geva, T, Brown, DW. Echocardiographic evaluation before bidirectional Glenn operation in functional single-ventricle heart disease: comparison to catheter angiography. Circ Cardiovas Imaging. 2011;4(5):498-505.
Google Scholar |
Crossref |
Medline2. Krupickova, S, Muthurangu, V, Hughes, M, et al. Echocardiographic arterial measurements in complex congenital diseases before bidirectional Glenn: comparison with cardiovascular magnetic resonance imaging. Eur Heart J Cardiovasc Imaging. 2017;18(3):332-341.
Google Scholar |
Medline3. Kaplinski, M, Ittenbach, RF, Hunt, ML, et al. Decreasing interstage mortality after the Norwood procedure: a 30-year experience. J Am Heart Assoc. 2020;9(19):e016889.
Google Scholar |
Crossref |
Medline4. Tabbutt, S, Ghanayem, N, Ravishankar, C, et al. Risk factors for hospital morbidity and mortality after the Norwood procedure: a report from the pediatric heart network single ventricle reconstruction trial. J Thorac Cardiovasc Surg. 2012;144(4):882-895.
Google Scholar |
Crossref |
Medline |
ISI5. Fogel, M . Is routine cardiac catheterization necessary in the management of patients with single ventricles across staged Fontan reconstruction? No! Pediatr Cardiol. 2005;26(2):154-158.
Google Scholar |
Crossref |
Medline6. Simsic, JM, Bradley, SM, Stroud, MR, Atz, AM. Risk factors for interstage death after the Norwood procedure. Pediatr Cardiol. 2005;26(4):400-403.
Google Scholar |
Crossref |
Medline |
ISI7. Hehir, DA, Dominguez, TE, Ballweg, JA, et al. Risk factors for interstage death after stage 1 reconstruction of hypoplastic left heart syndrome and variants. J Thorac Cardiovasc Surg. 2008;136(1):94-99, 99 e91–93.
Google Scholar |
Crossref |
Medline |
ISI8. Ghanayem, NS, Allen, KR, Tabbutt, S, et al. Interstage mortality after the Norwood procedure: results of the multicenter single ventricle reconstruction trial. J Thorac Cardiovasc Surg. 2012;144(4):896-906.
Google Scholar |
Crossref |
Medline |
ISI9. De Oliveira, NC, Ashburn, DA, Khalid, F, et al. Prevention of early sudden circulatory collapse after the Norwood operation. Circulation. 2004;110(11_suppl_1):II-133–II-138.
Google Scholar |
Crossref |
Medline10. Kleinerman, RA . Cancer risks following diagnostic and therapeutic radiation exposure in children. Pediatr Radiol. 2006;36(2):121-125.
Google Scholar |
Crossref |
Medline |
ISI11. Brown, DW, Gauvreau, K, Powell, AJ, et al. Cardiac magnetic resonance versus routine cardiac catheterization before bidirectional Glenn anastomosis in infants with functional single ventricle: a prospective randomized trial. Circulation. 2007;116(23):2718-2725.
Google Scholar |
Crossref |
Medline |
ISI12. Brown, DW, Gauvreau, K, Moran, AM, et al. Clinical outcomes and utility of cardiac catheterization prior to superior cavopulmonary anastomosis. J Thorac Cardiovasc Surg. 2003;126(1):272-281.
Google Scholar |
Crossref |
Medline13. Brown, DW, Gauvreau, K, Powell, AJ, et al. Cardiac magnetic resonance versus routine cardiac catheterization before bidirectional Glenn anastomosis: long-term follow-up of a prospective randomized trial. J Thorac Cardiovasc Surg. 2013;146(5):1172-1178.
Google Scholar |
Crossref |
Medline14. Chaosuwannakit, N, Makarawate, P. Diagnostic accuracy of low-dose dual-source cardiac computed tomography as compared to surgery in univentricular heart patients. J Cardiothorac Surg. 2018;13(1):1-6.
Google Scholar |
Crossref |
Medline15. Han, BK, Vezmar, M, Lesser, JR, et al. Selective use of cardiac computed tomography angiography: an alternative diagnostic modality before second-stage single ventricle palliation. J Thorac Cardiovasc Surg. 2014;148(4):1548-1554.
Google Scholar |
Crossref |
Medline16. Han, BK, Huntley, M, Overman, D, et al. Cardiovascular CT for evaluation of single-ventricle heart disease: risks and accuracy compared with interventional findings. Cardiol Young. 2018;28(1):9.
Google Scholar |
Crossref |
Medline17. Goldstein, BH, Holzer, RJ, Trucco, SM, et al. Practice variation in single-ventricle patients undergoing elective cardiac catheterization: a report from the congenital cardiac catheterization project on outcomes (C3PO). Congenit Heart Dis. 2016;11(2):122-135.
Google Scholar |
Crossref |
Medline18. McMahon, CJ, Eidem, BW, Bezold, LI, et al. Is cardiac catheterization a prerequisite in all patients undergoing bidirectional cavopulmonary anastomosis? J Am Soc Echocardiogr. 2003;16(10):1068-1072.
Google Scholar |
Crossref |
Medline19. Han, BK, Overman, DM, Grant, K, et al. Non-sedated, free breathing cardiac CT for evaluation of complex congenital heart disease in neonates. J Cardiovasc Comput Tomogr. 2013;7(6):354-360.
Google Scholar |
Crossref |
Medline20. Han, BK, Lindberg, J, Grant, K, Schwartz, RS, Lesser, JR. Accuracy and safety of high pitch computed tomography imaging in young children with complex congenital heart disease. Am J Cardiol. 2011;107(10):1541-1546.
Google Scholar |
Crossref |
Medline21. Gherardi, GG, Iball, GR, Darby, MJ, Thomson, JD. Cardiac computed tomography and conventional angiography in the diagnosis of congenital cardiac disease in children: recent trends and radiation doses. Cardiol Young. 2011;21(6):616-622.
Google Scholar |
Crossref |
Medline22. Watson, TG, Mah, E, Joseph Schoepf, U, King, L, Huda, W, Hlavacek, AM. Effective radiation dose in computed tomographic angiography of the chest and diagnostic cardiac catheterization in pediatric patients. Pediatr Cardiol. 2013;34(3):518-524.
Google Scholar |
Crossref |
Medline23. Ramamoorthy, C, Haberkern, CM, Bhananker, SM, et al. Anesthesia-related cardiac arrest in children with heart disease: data from the pediatric perioperative cardiac arrest (POCA) registry. Anesth Analg. 2010;110(5):1376-1382.
Google Scholar |
Crossref |
Medline |
ISI
Comments (0)