1. Hussain, I, Singh, NB, Singh, A, Singh, H, Singh, SC. Green synthesis of nanoparticles and its potential application. Biotechnol Lett. 2016;38(4):545-560. doi:
10.1007/s10529-015-2026-7.
Google Scholar |
Crossref |
Medline2. Mirzaei, H, Darroudi, M. Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceram Int. 2017;43(1):907-914.
https://www.sciencedirect.com/science/article/pii/S0272884216318144.
Google Scholar |
Crossref3. Singh, P, Kim, Y-J, Zhang, D, Yang, D-C. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016;34(7):588-599.
https://www.sciencedirect.com/science/article/abs/pii/S0167779916000408.
Google Scholar |
Crossref |
Medline4. Li, L, Zhou, P, Zhang, H, Meng, X, Li, J, Sun, T. Mid-temperature deep removal of hydrogen sulfide on rare earth (RE = Ce, La, Sm, Gd) doped ZnO supported on KIT-6: Effect of RE dopants and interaction between active phase and support matrix. Appl Surf Sci. 2017;407:197-208.
https://www.sciencedirect.com/science/article/abs/pii/S0169433217301411.
Google Scholar |
Crossref5. Vetchinkina, E, Loshchinina, E, Kursky, V, Nikitina, V. Reduction of organic and inorganic selenium compounds by the edible medicinal basidiomycete Lentinula edodes and the accumulation of elemental selenium nanoparticles in its mycelium. J Microbiol. 2013;51(6):829-835.
https://link.springer.com/article/10.1007/s12275-013-2689-5.
Google Scholar |
Crossref |
Medline6. Devi, LS, Joshi, SR. Antimicrobial and synergistic effects of silver nanoparticles synthesized using soil fungi of high altitudes of eastern himalaya. Mycobiology. 2012;40(1):27-34. DOI:
10.5941/MYCO.2012.40.1.027.
Google Scholar |
Crossref |
Medline7. Parikh, RY, Singh, S, Prasad, BLV, Patole, MS, Sastry, M, Shouche, YS. Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: towards understanding biochemical synthesis mechanism. Chembiochem. 2008;9(9):1415-1422.
https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/cbic.200700592.
Google Scholar |
Crossref |
Medline8. Zare, B, Babaie, S, Setayesh, N, Shahverdi, AR. Isolation and characterization of a fungus for extracellular synthesis of small selenium nanoparticles. Nanomed J. 2013;1(1):13-19.
http://nmj.mums.ac.ir/?_action=articleInfo&article=698.
Google Scholar9. Hariharan, H, Al-Harbi, N, Karuppiah, P, Rajaram, S. Microbial synthesis of selenium nanocomposite using Saccharomyces cerevisiae and its antimicrobial activity against pathogens causing nosocomial infection. Chalcogenide Lett. 2012;9(12):509-515.
Google Scholar10. Sarkar, J, Dey, P, Saha, S, Acharya, K. Mycosynthesis of selenium nanoparticles. Micro Nano Lett. 2011;6(8):599-602.
https://digital-library.theiet.org/content/journals/10.1049/mnl.2011.0227.
Google Scholar |
Crossref11. Bansal, V, Rautaray, D, Ahmad, A, Sastry, M. Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem. 2004;14(22):3303-3305.
https://pubs.rsc.org/en/content/articlehtml/2004/jm/b407904c.
Google Scholar |
Crossref12. El-Ramady, H, Alshaal, T, Elhawat, N, El-Dein Omara, A, El-Nahrawy, E, Omara, AE-D, et al. Biological aspects of selenium and silicon nanoparticles in the terrestrial environments. In: Phytoremediation. Cham, Switzerland: Springer; 2019:235-264.
https://link.springer.com/chapter/10.1007/978-3-319-99651-6_11#citeas.
Google Scholar13. Tallentire, A . Radio Sterilization of Medical Products, Pharmaceuticals and Bio Products. Techl. Report Series No. 72. Vienna: International Atomic Energy Agency; 1967.
Google Scholar14. Mutwakil, MH . Mutation Induction in Aspergillus terrus using N-methyl-N’-nitro-N-nitrosoguanidine (NTG) and gamma rays. Aust J Basic Appl Sci. 2011;5(12):496-500.
https://www.researchgate.net/profile/Mohammed_Mutwakil/publication/265945082_Mutation_Induction_in_Aspergillus_terrus_Using_N-Methyl-N'-Nitro-N-Nitrosoguanidine_NTG_and_Gamma_Rays/links/551b80300cf251c35b509be4/Mutation-Induction-in-Aspergillus-terrus-Using-N-Methyl-N-Nitro-N-Nitrosoguanidine-NTG-and-Gamma-Rays.pdf Google Scholar15. Haggag, WM, Mohamed, HAA. Enhanecment of antifungal metabolite production from gamma-ray induced mutants of some Trichoderma species for control onion white disease. Plant Pathol Bullet. 2002;11:45-56.
http://140.112.183.156/pdf/11-1/11-1-7.pdf.
Google Scholar16. El-Batal, A, Essam, TM, El-Zahaby, DA, Amin, MA. Synthesis of selenium nanoparticles by Bacillus laterosporus using gamma radiation. Br J Pharmaceut Res. 2014;4:1364-1386.
http://www.journaljpri.com/index.php/JPRI/article/view/18576.
Google Scholar |
Crossref17. Kojima, S, Matsuki, O, Kinoshita, I, Valdes Gonzalez, T, Shimura, N, Kubodera, A. Does small-dose γ-ray radiation induce endogenous antioxidant potential in vivo? Biol Pharm Bull. 1997;20(6):601-604.
https://www.jstage.jst.go.jp/article/bpb1993/20/6/20_6_601/_article/-char/ja/.
Google Scholar |
Crossref |
Medline |
ISI18. Yamaoka, K . Activation of antioxidant system by low dose radiation and its applicable possibility for treatment of reactive oxygen species-related diseases. J Clin Biochem Nutr. 2006;39(3):114-133.
https://www.jstage.jst.go.jp/article/jcbn/39/3/39_3_114/_article/-char/ja/.
Google Scholar |
Crossref19. EL- Metawelly, MM, Ahmed, HY, Mekawey, AA, Abd EL-Fatah, SM. Gamma radiation in improvement the production and anticancer of noval l-asparaginase fungal producer Fusarium incarnatum. J Appl Sci Res. 2019;6(4):14-23.
Google Scholar20. Abdel-Aziz, MM, Yosri, M, Amin, BH. Control of imipenem resistant-Klebsiella pneumoniaepulmonary infection by oral treatment using a combination of mycosynthesized Ag-nanoparticles and imipenem. J Radiat Res Appl Sci. 2017;10(4):353-360.
https://www.tandfonline.com/doi/full/10.1016/j.jrras.2017.09.002.
Google Scholar |
Crossref21. Amin, BH . Isolation and characterization of antiprotozoal and antimicrobial metabolite from Penicillium roqueforti. Afr J Mycol Biotech. 2016;21(3):13-26.
Google Scholar22. Elsherbiny, EA, Amin, BH, Baka, ZA. Efficiency of pomegranate (Punica granatum L.) peels extract as a high potential natural tool towards Fusarium dry rot on potato tubers. Postharvest Biol Technol. 2016;111:256-263.
https://www.sciencedirect.com/science/article/abs/pii/S0925521415301241.
Google Scholar |
Crossref23. Beutler, E, Duron, O, Kelly, BM Improved method for the determination of blood glutathione. J Lab Clin Med. 1963;61:882-888.
https://ci.nii.ac.jp/naid/10005420816/.
Google Scholar |
Medline24. Blatchley, ER, Meeusen, A, Aronson, AI, Brewster, L. Inactivation of Bacillus spores by ultraviolet or gamma radiation. J Environ Eng. 2005;131(9):1245-1252.
https://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9372.
Google Scholar |
Crossref25. Dhanjal, S, Cameotra, S. Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb Cell Factories. 2010;9(1):52.
https://microbialcellfactories.biomedcentral.com/articles/10.1186/1475-2859-9-52.
Google Scholar |
Crossref |
Medline26. Wang, T, Yang, L, Zhang, B, Liu, J. Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor. Colloids Surf B Biointerfaces. 2010;80(1):94-102.
https://www.sciencedirect.com/science/article/abs/pii/S0927776510002973.
Google Scholar |
Crossref |
Medline27. Pages, D, Rose, J, Conrod, S, Cuine, S, Carrier, P, Heulin, T, et al. Heavy metal tolerance in Stenotrophomonas maltophilia. PLoS One. 2008;3(2): e1539.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2212715/.
Google Scholar |
Crossref |
Medline28. Biswas, KC, Barton, LL, Tsui, WL, Shuman, K, Gillespie, J, Eze, CS. A novel method for the measurement of elemental selenium produced by bacterial reduction of selenite. J Microbiol Methods. 2011;86(2):140-144.
https://www.sciencedirect.com/science/article/pii/S0167701211001576.
Google Scholar |
Crossref |
Medline29. Chen, F, Zhang, XH, Hu, XD, Liu, PD, Zhang, HQ. The effects of combined selenium nanoparticles and radiation therapy on breast cancer cells in vitro. Artif Cells Nanomed Biotechnol. 2018;46(5):937-948.
https://www.tandfonline.com/doi/full/10.1080/21691401.2017.1347941.
Google Scholar |
Crossref |
Medline30. Worrall, E, Hamid, A, Mody, K, Mitter, N, Pappu, H. Nanotechnology for plant disease management. Agronomy. 2018;8(12):285.
https://www.mdpi.com/2073-4395/8/12/285.
Google Scholar |
Crossref31. Moaveni, P, Karimi, K, Valojerdi, MZ. The nanoparticles in plants: Review. J Nano Struct Chem. 2011;2:59-78.
Google Scholar32. Joshi, S, De Britto, S, Jogaiah, S, Ito, S-i. Mycogenic selenium nanoparticles as potential new generation broad spectrum antifungal molecules. Biomolecules. 2019;9(9):419.
https://www.mdpi.com/2218-273X/9/9/419.
Google Scholar |
Crossref33. Fesharaki, PJ, Nazari, P, Shakibaie, M, Rezaie, S, Banoee, M, Abdollahi, M, et al. Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Braz J Microbiol. 2010;41(2):461-466.
https://www.scielo.br/scielo.php?pid=S1517-83822010000200028&script=sci_arttext.
Google Scholar |
Crossref |
Medline Praharaj, S, Nath, S, Panigrahi, S, Basu, S, Ghosh, SK, Pande, S, et al. Room temperature synthesis of coinage metal (Ag, Cu) chalcogenides. Chem Commun 2006;36:3836-3838.
https://pubs.rsc.org/ko/content/articlehtml/2006/cc/b606681j.
Google Scholar |
Crossref35. Shah, CP, Dwivedi, C, Singh, KK, Kumar, M, Bajaj, PN. Riley oxidation: A forgotten name reaction for synthesis of selenium nanoparticles. Mater Res Bull. 2010;45(9):1213-1217.
https://www.sciencedirect.com/science/article/pii/S0025540810001807.
Google Scholar |
Crossref36. Simona, DA, Cristian, D. Enterprise Risk Management–Benefits of ISO 31000: 2018. Romanian Society for Economic Science, Revista OEconomica; 2018.
https://ideas.repec.org/a/oen/econom/y2018i03-4id527.html.
Google Scholar37. Abdelghany, AM, Abdelrazek, EM, Badr, SI, Abdel-Aziz, MS, Morsi, MA. Effect of Gamma-irradiation on biosynthesized gold nanoparticles using Chenopodium murale leaf extract. J Saudi Chem Soc. 2017;21(5):528-537.
https://www.sciencedirect.com/science/article/pii/S1319610315001179.
Google Scholar |
Crossref38. Shahverdi, AR, Fakhimi, A, Mosavat, G, Jafari-Fesharaki, P, Rezaie, S, Rezayat, SM. Antifungal activity of biogenic selenium nanoparticles. World Appl Sci J. 2010;10(8):918-922.
https://www.cabdirect.org/cabdirect/abstract/20113003964.
Google Scholar39. Lortie, L, Gould, WD, Rajan, S, McCready, RGL, Cheng, K-J. Reduction of selenate and selenite to elemental selenium by a Pseudomonas stutzeri isolate. Appl Environ Microbiol. 1992;58(12):4042-4044.
https://aem.asm.org/content/58/12/4042.short.
Google Scholar |
Crossref |
Medline40. Wang, Y, Shu, X, Zhou, Q, Fan, T, Wang, T, Chen, X, et al. Selenite reduction and the biogenesis of selenium nanoparticles by Alcaligenes faecalis Se03 isolated from the gut of Monochamus alternatus (Coleoptera: Cerambycidae). Int J Mol Sci. 2018;19(9):2799.
https://www.mdpi.com/1422-0067/19/9/2799.
Google Scholar |
Crossref41. Mosallam, FM, El-Sayyad, GS, Fathy, RM, El-Batal, AI. Biomolecules-mediated synthesis of selenium nanoparticles using Aspergillus oryzae fermented Lupin extract and gamma radiation for hindering the growth of some multidrug-resistant bacteria and pathogenic fungi. Microb Pathog. 2018;122:108-116.
https://www.sciencedirect.com/science/article/abs/pii/S0882401018305631.
Google Scholar |
Crossref |
Medline42. Lampis, S, Zonaro, E, Bertolini, C, Bernardi, P, Butler, CS, Vallini, G. Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeITE01 as a consequence of selenite reduction under aerobic conditions. Microb Cell Factories. 2014;13(1):35.
https://microbialcellfactories.biomedcentral.com/articles/10.1186/1475-2859-13-35.
Google Scholar |
Crossref |
Medline43. Narayanankutty, A, Job, JT, Narayanankutty, V. Glutathione, an antioxidant tripeptide: Dual roles in Carcinogenesis and Chemoprevention. Curr Protein Pept Sci. 2019;20(9):907-917.
https://www.ingentaconnect.com/content/ben/cpps/2019/00000020/00000009/art00008.
Google Scholar |
Crossref |
Medline
Comments (0)