Radiosensitizing Effect of Bromelain Using Tumor Mice Model via Ki-67 and PARP-1 Inhibition

1. Malik, A, Sultana, M, Qazi, A, et al. Role of natural radiosensitizers and cancer cell radioresistance: an update. Anal Cell Pathol. 2016;2016:6146595.
Google Scholar | Crossref2. Tang, L, Wei, F, Wu, Y, et al. Role of metabolism in cancer cell radioresistance and radiosensitization methods. J Exp Clin Cancer Res. 2018;37:87.
Google Scholar | Crossref | Medline3. Diehn, M, Cho, RW, Lobo, NA, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458:780-783.
Google Scholar | Crossref | Medline | ISI4. Harrison, LB, Chadha, M, Hill, RJ, Hu, K, Shasha, D. Impact of tumor hypoxia and anemia on radiation therapy outcomes. Oncologist. 2002;7:492-508.
Google Scholar | Crossref | Medline | ISI5. Thomas, SN, Liao, Z, Clark, D, et al. Exosomal proteome profiling: a potential multi-marker cellular phenotyping tool to characterize hypoxia-induced radiation resistance in breast cancer. Proteomes. 2013;1:87-108.
Google Scholar | Crossref | Medline6. Pajonk, F, Vlashi, E, McBride, WH. Radiation resistance of cancer stem cells: the 4 R’s of radiobiology revisited. Stem Cells. 2010;28:639-648.
Google Scholar | Crossref | Medline | ISI7. Chang, JE, Khuntia, D, Robins, HI, Mehta, MP. Radiotherapy and radiosensitizers in the treatment of glioblastoma multiforme. Clin Adv Hematol Oncol. 2007;5:894-902. 907–815.
Google Scholar | Medline8. Liu, C, Gross, N, Li, Y, et al. PARP inhibitor Olaparib increases the sensitization to radiotherapy in FaDu cells. J Cell Mol Med. 2020;24:2444-2450.
Google Scholar | Crossref | Medline9. Arora, R, Gupta, D, Chawla, R, et al. Radioprotection by plant products: present status and future prospects. Phytother Res. 2005;19:1-22.
Google Scholar | Crossref | Medline | ISI10. Yogo, K, Misawa, M, Shimizu, M, et al. Effect of gold nanoparticle radiosensitization on plasmid DNA damage induced by high-dose-rate brachytherapy. Int J Nanomedicine. 2021;16:359-370.
Google Scholar | Crossref | Medline11. Xiao, LJ, Zhao, S, Zhao, EH, et al. Clinicopathological and prognostic significance of Ki-67, caspase-3 and p53 expression in gastric carcinomas. Oncol Lett. 2013;6:1277-1284.
Google Scholar | Crossref | Medline12. Cserni, G, Vörös, A, Liepniece-Karele, I, et al. Distribution pattern of the Ki67 labelling index in breast cancer and its implications for choosing cut-off values. Breast. 2014;23:259-263.
Google Scholar | Crossref | Medline13. Yang, J, Wu, Z, Chen, Y, et al. Pre-treatment with Bifidobacterium infantis and its specific antibodies enhance targeted radiosensitization in a murine model for lung cancer. J Cancer Res Clin Oncol. 2021;147:411-422.
Google Scholar | Crossref | Medline14. Lesueur, P, Chevalier, F, Austry, JB, et al. Poly-(ADP-ribose)-polymerase inhibitors as radiosensitizers: a systematic review of pre-clinical and clinical human studies. Oncotarget. 2017;8:69105-69124.
Google Scholar | Crossref | Medline15. Washington, CR, Moore, KN. PARP inhibitors in the treatment of ovarian cancer: a review. Curr Opin Obstet Gynecol. 2021;33:1-6.
Google Scholar | Medline16. Bhattacharyya, BK. Bromelain: an over view. Nat Prod Radiance. 2008;7:359-363.
Google Scholar17. Gläser, D, Hilberg, T. The influence of bromelain on platelet count and platelet activity in vitro. Platelets. 2006;17:37-41.
Google Scholar | Crossref | Medline18. Dave, S, Kaur, NJ, Nanduri, R, Dkhar, HK, Kumar, A, Gupta, P. Inhibition of adipogenesis and induction of apoptosis and lipolysis by stem bromelain in 3T3-L1 adipocytes. PLoS One. 2012;7:e30831.
Google Scholar | Crossref19. Juhasz, B, Thirunavukkarasu, M, Pant, R, et al. Bromelain induces cardioprotection against ischemia-reperfusion injury through Akt/FOXO pathway in rat myocardium. Am J Physiol Heart Circ Physiol. 2008;294:H1365-H1370.
Google Scholar | Crossref20. Pavan, R, Jain, S, Shraddha, S, Kumar, A. Properties and therapeutic application of bromelain: a review. Biotechnol Res Int. 2012;2012:976203.
Google Scholar | Crossref | Medline21. Sagar, S, Rathinavel, AK, Lutz, WE, Bromelain inhibits SARS-CoV-2 infection in VeroE6 cells. Preprint. Posted online September 16, 2020 doi:10.1101/2020.09.16.297366
Google Scholar | Crossref22. Kritis, P, Karampela, I, Kokoris, S, Dalamaga, M. The combination of bromelain and curcumin as an immune-boosting nutraceutical in the prevention of severe COVID-19. Metabol Open. 2020;8:100066.
Google Scholar | Crossref | Medline23. Rathnavelu, V, Alitheen, NB, Sohila, S, Kanagesan, S, Ramesh, R. Potential role of bromelain in clinical and therapeutic applications. Biomed Rep. 2016;5:283-288.
Google Scholar | Crossref | Medline24. Fouz, N, Amid, A, Hashim, YZ. Cytokinetic study of MCF-7 cells treated with commercial and recombinant bromelain. Asian Pac J Cancer Prev. 2014;14:6709-6714.
Google Scholar | Crossref | Medline25. Maurer, HR. Bromelain: biochemistry, pharmacology and medical use. Cell Mol Life Sci. 2001;58:1234-1245.
Google Scholar | Crossref | Medline26. Pillai, K, Ehteda, A, Akhter, J, Chua, TC, Morris, DL. Anticancer effect of bromelain with and without cisplatin or 5-FU on malignant peritoneal mesothelioma cells. Anticancer Drugs. 2014;25:150-160.
Google Scholar | Crossref | Medline27. Gujral, MS, Patnaik, PM, Kaul, R, et al. Efficacy of hydrolytic enzymes in preventing radiation therapy-induced side effects in patients with head and neck cancers. Cancer Chemother Pharmacol. 2001;47:S23-S28.
Google Scholar | Crossref | Medline28. Hubarieva, HO, Kindzel’s’kyi, LP, Ponomar’ova, OV, et al. [Systemic enzymotherapy as a method of prophylaxis of postradiation complications in oncological patients]. Lik Sprava. 2000;(7-8):94-100.
Google Scholar | Medline29. Mekkawy, MH, Fahmy, HA, Nada, AS, Ali, OS. Study of the radiosensitizing and radioprotective efficacy of bromelain (a pineapple extract): in vitro and in vivo. Integr Cancer Ther. 2020;19:1-14.
Google Scholar | SAGE Journals30. Freimoser, FM, Jakob, CA, Aebi, M, Tuor, U. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay is a fast and reliable method for colorimetric determination of fungal cell densities. Appl Environ Microbiol. 1999;65:3727-3729.
Google Scholar | Crossref | Medline31. Buch, K, Peters, T, Nawroth, T, Sänger, M, Schmidberger, H, Langguth, P. Determination of cell survival after irradiation via clonogenic assay versus multiple MTT Assay—a comparative study. Radiat Oncol. 2012;7:1.
Google Scholar | Crossref | Medline32. Jiang, W, Liao, Y, Zhao, S, et al. The role of enhanced radiosensitivity and tumor-specific suicide gene vector in genetherapy of nasopharyngeal carcinoma. J Radiat Res. 2007;48:211-218.
Google Scholar | Crossref | Medline33. Paster, EV, Villines, KA, Hickman, DL. Endpoints for mouse abdominal tumor models: refinement of current criteria. Comp Med. 2009;59:234-241.
Google Scholar | Medline | ISI34. Osman, AM, Alqahtani, AA, Damanhouri, ZA, et al. Dimethylsulfoxide excerbates cisplatin-induced cytotoxicity in Ehrlich ascites carcinoma cells. Cancer Cell Int. 2015; 15:104.
Google Scholar | Crossref | Medline35. Hafez, EN, Moawed, FSM, Abdel-Hamid, GR, Elbakary, NM. Gamma radiation-attenuated toxoplasma gondii provokes apoptosis in ehrlich ascites carcinoma-bearing mice generating long-lasting immunity. Technol Cancer Res Treat. 2020;19:1-11.
Google Scholar | SAGE Journals36. Somasagara, RR, Hegde, M, Chiruvella, KK, Musini, A, Choudhary, B, Raghavan, SC. Extracts of strawberry fruits induce intrinsic pathway of apoptosis in breast cancer cells and inhibits tumor progression in mice. PLoS One. 2012; 7:e47021.
Google Scholar | Crossref | Medline37. Jensen, MM, Jørgensen, JT, Binderup, T, Kjaer, A. Tumor volume in subcutaneous mouse xenografts measured by microCT is more accurate and reproducible than determined by 18F-FDG-microPET or external caliper. BMC Med Imaging. 2008;8:16.
Google Scholar | Crossref | Medline38. Dowsett, M, Nielsen, TO, A'Hern, R, et al. Assessment of Ki67 in breast cancer: recommendations from the international Ki67 in breast cancer working group. J Natl Cancer Inst. 2011;103:1656-1664.
Google Scholar | Crossref | Medline39. Yoshioka, T, Kawada, K, Shimada, T, Mori, M. Lipid peroxidation in maternal and cord blood and protective mechanism against activated-oxygen toxicity in the blood. Am J Obstet Gynecol. 1979;135:372-376.
Google Scholar | Crossref | Medline | ISI40. Vrablic, AS, Albright, CD, Craciunescu, CN, Salganik, RI, Zeisel, SH. Altered mitochondrial function and overgeneration of reactive oxygen species precede the induction of apoptosis by 1-O-octadecyl-2-methyl-rac-glycero-3-phosphocholine in p53-defective hepatocytes. FASEB J. 2001;15:1739-1744.
Google Scholar | Crossref | Medline | ISI41. Katerji, M, Filippova, M, Duerksen-Hughes, P. Approaches and methods to measure oxidative stress in clinical samples: research applications in the cancer field. Oxid Med Cell Longev. 2019;2019.
Google Scholar | Crossref | Medline42. Guillot, C, Favaudon, V, Herceg, Z, et al. PARP inhibition and the radiosensitizing effects of the PARP inhibitor ABT-888 in in vitro hepatocellular carcinoma models. BMC Cancer. 2014;14:603.
Google Scholar | Crossref | Medline43. Jänicke, RU, Engels, IH, Dunkern, T, Kaina, B, Schulze-Osthoff, K, Porter, AG. Ionizing radiation but not anticancer drugs causes cell cycle arrest and failure to activate the mitochondrial death pathway in MCF-7 breast carcinoma cells. Oncogene. 2001;20:5043-5053.
Google Scholar | Crossref | Medline44. Raeisi, F, Shahbazi-Gahrouei, D, Raeisi, E, Heidarian, E. Evaluation of the radiosensitizing potency of bromelain for radiation therapy of 4T1 breast cancer cells. J Med Signals Sens. 2019;9:68-74.
Google Scholar | Crossref | Medline45. Guimarães-Ferreira, CA, Rodrigues, EG, Mortara, RA, et al. Antitumor effects in vitro and in vivo and mechanisms of protection against melanoma B16F10-Nex2 cells by fastuosain, a cysteine proteinase from Bromelia fastuosa. Neoplasia. 2007;9:723-733.
Google Scholar | Crossref | Medline | ISI46. Bhui, K, Tyagi, S, Prakash, B, Shukla, Y. Pineapple bromelain induces autophagy, facilitating apoptotic response in mammary carcinoma cells. Biofactors. 2010;36:474-482.
Google Scholar | Crossref | Medline47. Bhui, K, Tyagi, S, Srivastava, AK, et al. Bromelain inhibits nuclear factor kappa-B translocation, driving human epidermoid carcinoma A431 and melanoma A375 cells through G2/M arrest to apoptosis. Mol Carcinog. 2012;51: 231-243.
Google Scholar | Crossref | Medline48. Akopova, OV, Kolchinskaya, LI, Nosar, VI, Bouryi, VA, Mankovska, IN, Sagach, VF. Cytochrome C as an amplifier of ROS release in mitochondria. Fiziol Zh. 2012;58:3-12.
Google Scholar49. Li, N, Karin, M. Ionizing radiation and short wavelength UV activate NF-kappaB through two distinct mechanisms. Proc Natl Acad Sci U S A. 1998;95:13012-13017.
Google Scholar | Crossref | Medline | ISI50. Piret, B, Schoonbroodt, S, Piette, J. The ATM protein is required for sustained activation of NF-kappaB following DNA damage. Oncogene. 1999;18:2261-2271.
Google Scholar | Crossref |

留言 (0)

沒有登入
gif