Finite Element Analysis of Cannulated Screws as Prophylactic Intervention of Hip Fractures

1. The National Institute of Health and Care Excellence . NICE Clinical Guideline 124: The Management of Hip Fracture in Adults. London: Royal College of Physicians; 2011.
Google Scholar2. Schemitsch, E, Bhandari, M. Femoral neck fractures: Controversies and evidence. J Orthop Trauma. 2009;23(6):385.
Google Scholar | Crossref | Medline3. Mundi, S, Pindiprolu, B, Simunovic, N, Bhandari, M. Similar mortality rates in hip fracture patients over the past 31 years: A systematic review of RCTs. Acta Orthop. 2014;85(1):54-59.
Google Scholar | Crossref | Medline | ISI4. Parkkari, J, Kannus, P, Palvanen, M, Natri, A, Vainio, J, Aho, H, et al. Majority of hip fractures occur as a result of a fall and impact on the greater trochanter of the femur: A prospective controlled hip fracture study with 206 consecutive patients. Calcif Tissue Int. 1999;65(3):183-187.
Google Scholar | Crossref | Medline | ISI5. Hughes, JD, Bartley, JH, Brennan, KL, Maldonado, YM, Brennan, ML, Chaput, CD. Rate of contralateral hip fracture after dynamic hip screw vs intramedullary nail for treatment of pertrochanteric hip fractures. Proc (Bayl Univ Med Cent). 2017;30(3):268-272.
Google Scholar | Crossref | Medline6. Appelman-Dijkstra, NM, Papapoulos, SE. Modulating bone resorption and bone formation in opposite directions in the treatment of postmenopausal osteoporosis. Drugs. 2015;75:1049-1058.
Google Scholar | Crossref | Medline7. Zhou, S, Huang, G, Chen, G. Synthesis and biological activities of drugs for the treatment of osteoporosis. Eur J Med Chem. 2020;197:112313.
Google Scholar | Crossref | Medline8. Srivastava, M, Deal, C. Osteoporosis in elderly: Prevention and treatment. Clin Geriatr Med. 2002;18(3):529-555.
Google Scholar | Crossref | Medline | ISI9. Varga, P, Hofmann-Fliri, L, Blauth, M, Windolf, M. Prophylactic augmentation of the osteoporotic proximal femur-mission impossible? Bonekey Rep. 2016 7;5:854.
Google Scholar | Crossref | Medline10. Khoo, C, Haseeb, A, Ajit Singh, V. Cannulated Screw fixation for femoral neck fractures: A 5-year experience in a single institution. Malays Orthop J. 2014;8(2):14-21.
Google Scholar | Crossref | Medline11. Zwicky, L . Prophylactic Stabilization of Osteoporotic Femora for Fracture Prevention (In German). [MSc thesis]. Switzerland: ETH Zürich, Davos and Zurich; 2008.
Google Scholar12. Laboratory for Bone Biomechanics. Master’s Thesis. ETH Zurich. Zürich, Switzerland.
Google Scholar13. Feng, H, Feng, J, Li, Z, Feng, Q, Zhang, Q, Qin, D, et al. Percutaneous femoroplasty for the treatment of proximal femoral metastases. Eur J Surg Oncol. 2014;40:402-405.
Google Scholar | Crossref | Medline14. Varga, P, Inzana, JA, Schwiedrzik, J, Zysset, PK, Gueorguiev, B, Blauth, M, et al. New approaches for cement-based prophylactic augmentation of the osteoporotic proximal femur provide enhanced reinforcement as predicted by non-linear finite element simulations. Clin Biomech (Bristol, Avon). 2017;44:7-13.
Google Scholar | Crossref | Medline15. Heini, PF, Franz, T, Fankhauser, C, Gasser, B, Ganz, R. Femoroplasty-augmentation of mechanical properties in the osteoporotic proximal femur: A biomechanical investigation of PMMA reinforcement in cadaver bones. Clin Biomech. 2004;19:506-512.
Google Scholar | Crossref | Medline | ISI16. Beckmann, J, Ferguson, SJ, Gebauer, M, Luering, C, Gasser, B, Heini, P. Femoroplasty--augmentation of the proximal femur with a composite bone cement--feasibility, biomechanical properties and osteosynthesis potential. Med Eng Phys. 2007;29:755-764.
Google Scholar | Crossref | Medline | ISI17. Varga, P, Schwiedrzik, J, Zysset, PK, Fliri-Hofmann, L, Widmer, D, Gueorguiev, B, et al. Nonlinear quasi-static finite element simulations predict in vitro strength of human proximal femora assessed in a dynamic sideways fall setup. J Mech Behav Biomed Mater. 2016;57:116-127.
Google Scholar | Crossref | Medline18. Pomeroy, E, Mushrif-Tripathy, V, Kulkarni, B, Kinra, S, Stock, JT, Cole, TJ, et al. Estimating body mass and composition from proximal femur dimensions using dual energy x-ray absorptiometry. Archaeol Anthropol Sci. 2019;11(5):2167-2179.
Google Scholar | Crossref | Medline19. Zech, WD, Näf, M, Siegmund, F, Jackowski, C, Lösch, S. Body height estimation from post-mortem CT femoral F1 measurements in a contemporary Swiss population. Leg Med (Tokyo). 2016;19:61-66.
Google Scholar | Crossref | Medline20. Helgason, B, Perilli, E, Schileo, S, Taddei, F, Brynjólfsson, S, Viceconti, M. Mathematical relationships between bone density and mechanical properties: A literature review. Clin BioMech. 2008;23(2):135-146.
Google Scholar | Crossref | Medline | ISI21. Lotz, JC, Gerhart, TN, Hayes, WC. Mechanical properties of trabecular bone from the proximal femur: A quantitative CT study. J Comput Assist Tomogr. 1990;14(1):107-114.
Google Scholar | Crossref | Medline | ISI22. Morgan, EF, Bayraktar, HH, Keaveny, TM. Trabecular bone modulus-density relationships depend on anatomic site. J Biomech. 2003;36(7):897-904.
Google Scholar | Crossref | Medline | ISI23. Reilly, DT, Burstein, AH. The elastic and ultimate properties of compact bone tissue. J Biomech. 1975;8(6):393-405.
Google Scholar | Crossref | Medline | ISI24. Bessho, M, Ohnishi, I, Matsuyama, J, Matsumoto, T, Imai, K, Nakamura, K. Prediction of strength and strain of the proximal femur by a CT-based finite element method. J Biomech. 2007;40(8):1745-1753.
Google Scholar | Crossref | Medline | ISI25. Yoshikawa, T, Turner, CH, Peacock, M, Slemenda, CW, Weaver, CM, Teegarden, D, et al. Geometric structure of the femoral-neck measured using dual-energy X-ray absorptiometry. J Bone Miner Res. 1994;9:1053-1064.
Google Scholar | Crossref | Medline | ISI26. Miura, M, Nakamura, J, Matsuura, Y, Wako, Y, Suzuki, T, Hagiwara, S, et al. Prediction of fracture load and stiffness of the proximal femur by CT-based specimen specific finite element analysis: Cadaveric validation study. BMC Musculoskelet Disord. 2017;18:536.
Google Scholar | Crossref | Medline27. Keyak, JH, Lee, IY, Skinner, HB. Correlations between orthogonal mechanical properties and density of trabecular bone: Use of different densitometric measures. J Biomed Mater Res. 1994 Nov;28(11):1329-1336.
Google Scholar | Crossref | Medline28. Pétursson, Þ, Edmunds, KJ, Gíslason, MK, Magnússon, B, Magnúsdóttir, G, Halldórsson, G, et al. Bone mineral density and fracture risk assessment to optimize prosthesis selection in total hip replacement. Comput Math Methods Med. 2015;2015:162481.
Google Scholar | Crossref | Medline29. Ott S, M . Cortical or trabecular bone: What’s the difference? Am J Nephrol. 2018;47:373-375.
Google Scholar | Crossref | Medline

Comments (0)

No login
gif