Plasma Phospholipids: A Promising Simple Biochemical Parameter to Evaluate COVID-19 Infection Severity

1. Lu, H, Stratton, CW, Tang, YW. Outbreak of pneumonia of unknown etiology in Wuhan, China: the mystery and the miracle. J Med Virol. 2020;92:401-402.
Google Scholar | Crossref | Medline2. Lippi, G, Plebani, M. Procalcitonin in patients with severe coronavirus disease 2019 (COVID19): a meta-analysis. Clin Chim Acta. 2020;505:190-191.
Google Scholar | Crossref | Medline3. Guan, WJ, Ni, ZY, Hu, Y, Liang, WH, Ou, CQ, He, JX. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708-1720.
Google Scholar | Crossref | Medline4. World Health Organization Director-General’s Opening Remarks at the Media Briefing on COVID-19–11 March 2020 . https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19—11-march-2020. Accessed March 11, 2020.
Google Scholar5. World Health Organization Director-General’s Opening Remarks at the Media Briefing on COVID-19- July 14, 2020 . https://www.worldometers.info/coronavirus/?utm_campaign=homeAdUOA?Si
Google Scholar6. Mehta, P, McAuley, DF, Brown, M, Sanchez, E, Tattersall, RS, Manson, JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395:1033-1034.
Google Scholar | Crossref | Medline7. Stebbing, J, Phelan, A, Griffin, I, Tucker, C, Oechsle, O, Smith, D. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 2020;20:400-402.
Google Scholar | Crossref | Medline8. Tay, MZ, Poh, CM, Renia, L, MacAry, PA, Ng, LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20:363-374.
Google Scholar | Crossref | Medline9. Wu, C, Chen, X, Cai, Y, Xia, J, Zhou, X, Xu, S. Risk factors associated with severe respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180:934-943.
Google Scholar | Crossref | Medline10. Cheng, K, Wei, M, Shen, H, Wu, C, Chen, D, Xiong, W. Clinical characteristics of 463 patients with common and severe type coronavirus disease [in Chinese]. Shanghai Med J. 2020;67:255-266.
Google Scholar11. Gao, Y, Li, T, Han, M, Li, X, Wu, D, Xu, Y. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J Med Virol. 2020;92:791-796.
Google Scholar | Crossref | Medline12. Qin, C, Zhou, L, Hu, Z, Zhang, S, Yang, S, Tao, Y. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020;65:143-157. doi:10.1093/cid/ciaa248.
Google Scholar | Crossref13. Wright, SM, Hockey, PM, Enhorning, G, et al. Altered airway surfactant phospholipid composition and reduced lung function in asthma. J Appl Physiol (1985). 2000;89:1283-1292.
Google Scholar | Crossref | Medline14. Kuronuma, K, Mitsuzawa, H, Takeda, K, et al. Anionic pulmonary surfactant phospholipids inhibit inflammatory responses from alveolar macrophages and U937 cells by binding the lipopolysaccharide-interacting proteins CD14 and MD-2. J Biol Chem. 2009;284:25488-25500.
Google Scholar | Crossref | Medline15. Akpınar, S, Oran, M, Doğan, M, Çelikkol, A, Erdem, I, Turgut, B. The role of oxidized phospholipids in COVID-19-associated hypercoagulopathy. Eur Rev Med Pharmacol Sci. 2021;25:5304-5309. doi:10.26355/eurrev_202108_26551.
Google Scholar | Crossref | Medline16. Oskolkova, OV, Godschachner, V, Bochkov, VN. Off-Target Anti-Inflammatory Activity of the P2X7 Receptor Antagonist AZ11645373. Inflammation. 2017;40:530-536. doi:10.1007/s10753-016-0499-8.
Google Scholar | Crossref | Medline17. Chen, CM, Wu, YR, Cheng, ML, et al. Increased oxidative damage and mitochondrial abnormalities in the peripheral blood of Huntington’s disease patients. Biochem Biophys Res Commun. 2007;359:335-340. doi:10.1016/j.bbrc.2007.05.093.
Google Scholar | Crossref | Medline18. Ari, E, Kaya, Y, Demir, H, et al. Oxidative DNA damage correlates with carotid artery atherosclerosis in hemodialysis patients. Hemodial Int. 2011;15:453-459. doi:10.1111/j.1542-4758.2011.00568.x.
Google Scholar | Crossref | Medline19. Berliner, JA, Watson, AD. A role for oxidized phospholipids in atherosclerosis. N Engl J Med. 2005;353:9-11.
Google Scholar | Crossref | Medline20. Bochkov, VN, Kadl, A, Huber, J, Gruber, F, Binder, BR, Leitinger, N. Protective role of phospholipid oxidation products in endotoxin-induced tissue damage. Nature. 2002;419:77-81.
Google Scholar | Crossref | Medline | ISI21. Cruz, D, Watson, AD, Miller, CS, et al. Host-derived oxidized phospholipids and HDL regulate innate immunity in human leprosy. J Clin Invest. 2008;118:2917-2928.
Google Scholar | Crossref | Medline22. Imai, Y, Kuba, K, Neely, GG, et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of severe lung injury. Cell. 2008;133:235-249.
Google Scholar | Crossref | Medline | ISI23. Weismann, D, Hartvigsen, K, Lauer, N, et al. Complement factor H binds malondialdehyde epitopes and protects from oxidative stress. Nature. 2012;478:76-81.
Google Scholar | Crossref24. Stewart, CR, Stuart, LM, Wilkinson, K, et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol. 2010;11:155-161.
Google Scholar | Crossref | Medline | ISI25. Hussein, MA . Administration of exogenous surfactant and cytosolic phospholipase A2α inhibitors may Help COVID-19 infected patients with chronic diseases [published online ahead of print March 11, 2021]. Coronaviruses J. doi:10.2174/2666796702666210311123323.
Google Scholar | Crossref26. Triggiani, M, Granata, F, Giannattasio Marone, G. Phospholipases A2 in inflammatory and allergic diseases: not just enzymes. J Allergy Clin Immunol. 2005;116:1000-1006.
Google Scholar | Crossref | Medline27. Triggiani, M, Granata, F, Oriente, A. Secretory phospholipases A2 induce cytokine release from blood and synovial fluid monocytes. Eur J Immunol. 2002;32:67-76.
Google Scholar | Crossref | Medline28. Triggiani, M, Granata, F, Balestrieri, B. Secretory phospholipases A2 activates selective functions in human eosinophils. J Immunol. 2003;170:3279-3288.
Google Scholar | Crossref | Medline29. Soy, M, Keser, G, Atagunduz, P, Tabak, F, Atagunduz, I, Kayhan, S. Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clin Rheumatol. 2020;39:2085-2094.
Google Scholar | Crossref | Medline30. Petrovic, N, Grove, C, Langton, PE. A simple assay for a human serum phospholipase A2 that is associated with high-density lipoproteins. J Lipid Res. 2001;42:1706-1713.
Google Scholar | Crossref | Medline31. World Health Organization . About COVID-19 March 2020. http://www.emro.who.int/health-topics/corona-virus/about-covid-19.html. Accessed June 7, 2020.
Google Scholar32. Wu, A, Peng, Y, Huang, B, et al. Genome composition and divergence of the novel Coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 2020;27:325-328. doi:10.1016/j.chom.2020.02.001.
Google Scholar | Crossref | Medline33. Chen, Y, Liu, Q, Guo, D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol. 2020;12:432-445. doi:10.1002/jmv.25681.
Google Scholar | Crossref34. Zhang, JJ, Dong, X, Cao, YY, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020;75:1730-1741.doi:10.1111/all.14238.
Google Scholar | Crossref | Medline35. Yun, H, Sun, Z, Wu, J, Tang, A, Hu, M, Xiang, Z. Laboratory data analysis of novel coronavirus (COVID-19) screening in 2510 patients. Clin Chim Acta. 2020;507:94-97.
Google Scholar | Crossref | Medline36. Wang, LS, Wang, YR, Ye, DW, Liu, QQ. A review of the 2019 Novel Coronavirus (COVID-19) based on current evidence. Int J Antimicrob Agents. 2020;56:106137.
Google Scholar | Crossref | Medline37. Radisic, MV, Piro, MA, Mori, I, Rotryng, F, Santamarina, JF. SARS-CoV-2 and dengue virus co-infection. A case report. Hemoglobin. 2020;16: 155.
Google Scholar38. Lin, L, Lu, L, Cao, W, Li, T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection–a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect. 2020;9:727-732.
Google Scholar | Crossref | Medline39. Drake, MG, Bivins-Smith, ER, Proskocil, BJ, Nie, Z, Scott, GD, Lee, JJ. Human and mouse eosinophils have antiviral activity against parainfluenza virus. Am J Respir Cell Mol Biol. 2016;55:387-394.
Google Scholar | Crossref | Medline40. Malinczak, CA, Fonseca, W, Rasky, AJ, Ptaschinski, C, Morris, S, Ziegler, SF. Sex-associated TSLP-induced immune alterations following early-life RSV infection leads to enhanced allergic disease. Mucosal Immunol. 2019;12:969-979.
Google Scholar | Crossref | Medline41. Connelly, KG, Moss, M, Parsons, PE, Moore, EE, Moore, FA, Giclas, PC. (1997) Serum ferritin as a predictor of the severe respiratory distress syndrome. Am J Respir Crit Care Med. 1997;155:21-25.
Google Scholar | Crossref | Medline42. Huang, I, Pranata, R, Lim, MA, Oehadian, A, Alisjahbana, B. C-reactive protein, procalcitonin, D-dimer, and ferritin in severe coronavirus disease-2019: a meta-analysis. Ther Adv Respir Dis. 2020;14:1-14. doi:10.1177/1753466620937175.
Google Scholar | SAGE Journals43. Levi, M, van der Poll, T. Coagulation and sepsis. Thromb Res;. 2017;149:38-44.
Google Scholar | Crossref | Medline | ISI44. Lue, W, Yu, H, Gou, J. Clinical pathology of critical patient with novel coronavirus pneumonia (COVID-19). Preprints. 2020. https://www.preprints.org/manuscript/202002.0407/v1.
Google Scholar45. Deng, F, Zhang, L, Lyu, L, et al. Increased levels of ferritin on admission predicts intensive care unit mortality in patients with COVID-19. Med Clin (Engl Ed). 2021;156:324-331. doi:10.1016/j.medcle.2020.11.015. Epub 2021 Apr 1. PMID.
Google Scholar | Crossref | Medline46. Tang, N, Bai, H, Chen, X. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18:1094-1099. doi:10.1111/jth.14817.
Google Scholar | Crossref | Medline47. Li, XY, Du, B, Wang, YS. The keypoints in treatment of the critical coronavirus disease 2019 patient. Zhonghua Jie He He Hu Xi Za Zhi. 2020;43:E026. doi:10.3760/cma.j.cn112147-20200224.
Google Scholar | Crossref48. Kell, DB, Pretorius, E. Serum ferritin is an important inflammatory disease marker, as it is mainly a leakage product from damaged cells. Metallomics. 2014;6:748-773. doi:10.1039/c3mt00347g.
Google Scholar | Crossref | Medline | ISI49. Ruscitti, P, Berardicurti, O, Di Benedetto, P, et al. Severe COVID-19, another piece in the puzzle of the hyperferritinemic syndrome. An immunomodulatory perspective to alleviate the storm. Front Immunol. 2020;11:1130. doi:10.3389/fimmu.2020.01130.
Google Scholar | Crossref | Medline50. Ruscitti, P, Giacomelli, R. Ferritin and severe COVID-19, from clinical observations to pathogenic implications and therapeutic perspectives. Isr Med Assoc J. 2020;22:516-518.
Google Scholar |

留言 (0)

沒有登入
gif