Para-Sports can Promote Functional Reorganization in the Ipsilateral Primary Motor Cortex of Lower Limbs Amputee

1. Chen, R, Corwell, B, Yaseen, Z, Hallett, M, Cohen, LG. Mechanisms of cortical reorganization in lower-limb amputees. J Neurosci. 1998;18(9):3443-3450.
Google Scholar | Crossref | Medline2. Ferreri, F, Guerra, A, Rossini, PM. Neurophysiological markers of plastic brain reorganization following central and peripheral lesions. Arch Ital Biol. 2014;152(4):216-238.
Google Scholar | Medline3. Xie, H, Kane, JT, Dennis, MJ, et al. Case series evidence for changed interhemispheric relationships in cortical structure in some amputees. J Clin Neurosci. 2013;20(4):523-526.
Google Scholar | Crossref | Medline4. Jiang, G, Yin, X, Li, C, et al. The plasticity of brain gray matter and white matter following lower limb amputation. Neural Plast. 2015;2015:1-10.
Google Scholar | Crossref5. Draganski, B, Moser, T, Lummel, N, et al. Decrease of thalamic gray matter following limb amputation. Neuroimage. 2006;31(3):951-957.
Google Scholar | Crossref | Medline6. Jiang, G, Li, C, Wu, J, et al. Progressive thinning of visual motion area in lower limb amputees. Front Hum Neurosci. 2016;10(79):1-6.
Google Scholar | Medline7. Zhang, J, Zhang, Y, Wang, L, et al. Brain functional connectivity plasticity within and beyond the sensorimotor network in lower-limb amputees. Front Hum Neurosci. 2018;12(10):1-11.
Google Scholar | Medline8. Li, Z, Li, C, Fan, L, et al. Altered microstructure rather than morphology in the corpus callosum after lower limb amputation. Sci Rep. 2017;7:44780.
Google Scholar | Crossref | Medline9. Makin, TR, Flor, H. Brain (re)organisation following amputation: implications for phantom limb pain. Neuroimage. 2020;218:116943.
Google Scholar | Crossref | Medline10. Schwenkreis, P, Pleger, B, Cornelius, B, et al. Reorganization in the ipsilateral motor cortex of patients with lower limb amputation. Neurosci Lett. 2003;349:187-190.
Google Scholar | Crossref | Medline11. Hordacre, B, Bradnam, L. Reorganisation of primary motor cortex in a transtibial amputee during rehabilitation: a case report. Clin Neurophysiol. 2013;124(9):1919-1921.
Google Scholar | Crossref | Medline12. Hordacre, B, Bradnam, LV, Barr, C, Patritti, BL, Crotty, M. Ipsilateral corticomotor excitability is associated with increased gait variability in unilateral transtibial amputees. Eur J Neurosci. 2014;40(2):2454-2462.
Google Scholar | Crossref | Medline13. Mizuguchi, N, Nakagawa, K, Tazawa, Y, Kanosue, K, Nakazawa, K. Functional plasticity of the ipsilateral primary sensorimotor cortex in an elite long jumper with below-knee amputation. NeuroImage Clin. 2019;23:101847.
Google Scholar | Crossref | Medline14. Zaaimi, B, Edgley, SA, Soteropoulos, DS, Baker, SN. Changes in descending motor pathway connectivity after corticospinal tract lesion in macaque monkey. Brain. 2012;135(7):2277-2289.
Google Scholar | Crossref | Medline15. Soteropoulos, DS, Edgley, SA, Baker, SN. Lack of evidence for direct corticospinal contributions to control of the ipsilateral forelimb in monkey. J Neurosci. 2011;31(31):11208-11219.
Google Scholar | Crossref | Medline16. Alawieh, A, Tomlinson, S, Adkins, D, Kautz, S, Feng, W. Preclinical and clinical evidence on ipsilateral corticospinal projections: implication for motor recovery. Transl Stroke Res. 2017;8(6):529-540.
Google Scholar | Crossref | Medline17. Jang, S, Choi, B, Kim, S, Chang, C, Jung, Y, Yeo, S. Injury of the corticoreticular pathway in subarachnoid haemorrhage after rupture of a cerebral artery aneurysm. J Rehabil Med. 2015;47(2):133-137.
Google Scholar | Crossref | Medline18. Takenobu, Y, Hayashi, T, Moriwaki, H, Nagatsuka, K, Naritomi, H, Fukuyama, H. Motor recovery and microstructural change in rubro-spinal tract in subcortical stroke. NeuroImage Clin. 2014;4:201-208.
Google Scholar | Crossref | Medline19. Jang, SH . A review of the ipsilateral motor pathway as a recovery mechanism in patients with stroke. NeuroRehabilitation. 2009;24(4):315-320.
Google Scholar | Crossref | Medline20. Pundik, S, McCabe, JP, Hrovat, K, et al. Recovery of post stroke proximal arm function, driven by complex neuroplastic bilateral brain activation patterns and predicted by baseline motor dysfunction severity. Front Hum Neurosci. 2015;9:394.
Google Scholar | Crossref | Medline21. Cleland, BT, Madhavan, S. Ipsilateral motor pathways to the lower limb after stroke: insights and opportunities. J Neurosci Res. 2021;99(6):1565-1578.
Google Scholar | Crossref | Medline22. Nishimura, Y, Isa, T. Cortical and subcortical compensatory mechanisms after spinal cord injury in monkeys. Exp Neurol. 2011;235:152-161.
Google Scholar | Crossref | Medline23. Lundell, H, Christensen, MS, Barthélemy, D, Willerslev-Olsen, M, Biering-Sørensen, F, Nielsen, JB. Cerebral activation is correlated to regional atrophy of the spinal cord and functional motor disability in spinal cord injured individuals. Neuroimage. 2011;54:1254-1261.
Google Scholar | Crossref | Medline24. Philip, BA, Frey, SH. Compensatory changes accompanying chronic forced use of the nondominant hand by unilateral amputees. J Neurosci. 2014;34(10):3622-3631.
Google Scholar | Crossref | Medline25. Nakata, H, Yoshie, M, Miura, A, Kudo, K. Characteristics of the athletes’ brain: evidence from neurophysiology and neuroimaging. Brain Res Rev. 2010;62(2):197-211.
Google Scholar | Crossref | Medline26. Dayan, E, Cohen, LG. Neuroplasticity subserving motor skill learning. Neuron. 2011;72(3):443-454.
Google Scholar | Crossref | Medline | ISI27. Callan, DE, Naito, E. Neural processes distinguishing elite from expert and novice athletes. Cognit Behav Neurol. 2014;27(4):183-188.
Google Scholar | Crossref | Medline28. Guillot, A, Collet, C, Nguyen, VA, Malouin, F, Richards, C, Doyon, J. Brain activity during visual versus kinesthetic imagery: an fMRI study. Hum Brain Mapp. 2008;30(7):2157-2172.
Google Scholar | Crossref29. Draganski, B, Moser, T, Lummel, N, et al. Decrease of thalamic gray matter following limb amputation. Neuroimage. 2006;31(3):951-957.
Google Scholar | Crossref | Medline30. Di Vita, A, Boccia, M, Palermo, L, et al. Cerebellar grey matter modifications in lower limb amputees not using prosthesis. Sci Rep. 2018;8(1):370-377.
Google Scholar | Crossref | Medline31. Kapreli, E, Athanasopoulos, S, Papathanasiou, M, et al. Lower limb sensorimotor network: issues of somatotopy and overlap. Cortex. 2007;43(2):219-232.
Google Scholar | Crossref | Medline | ISI32. Marquis, R, Muller, S, Lorio, S, et al. Spatial resolution and imaging encoding fMRI settings for optimal cortical and subcortical motor somatotopy in the human brain. Front Neurosci. 2019;13:571.
Google Scholar | Crossref | Medline33. Krings, T, Töpper, R, Foltys, H, et al. Cortical activation patterns during complex motor tasks in piano players and control subjects. A functional magnetic resonance imaging study. Neurosci Lett. 2000;278(3):189-193.
Google Scholar | Crossref | Medline34. Humberstone, M, Sawle, GV, Clare, S, et al. Functional magnetic resonance imaging of single motor events reveals human presupplementary motor area. Ann Neurol. 1997;42(4):632-637.
Google Scholar | Crossref | Medline35. Welniarz, Q, Dusart, I, Roze, E. The corticospinal tract: evolution, development, and human disorders. Dev Neurobiol. 2017;77(7):810-829.
Google Scholar | Crossref | Medline36. Jang, SH, Lee, SJ. Corticoreticular tract in the human brain: a mini review. Front Neurol. 2019;10:1188.
Google Scholar | Crossref | Medline37. Hétu, S, Grégoire, M, Saimpont, A, et al. The neural network of motor imagery: an ALE meta-analysis. Neurosci Biobehav Rev. 2013;37(5):930-949.
Google Scholar | Crossref | Medline | ISI38. Hanakawa, T, Dimyan, MA, Hallett, M. Motor planning, imagery, and execution in the distributed motor network: a time-course study with functional MRI. Cerebr Cortex. 2008;18:2775-2788.
Google Scholar | Crossref | Medline39. Jacobs, KM, Donoghue, JP. Reshaping the cortical motor map by unmasking latent intracortical connections. Science. 1991;251:944-947.
Google Scholar | Crossref | Medline | ISI40. Floyer-Lea, A, Wylezinska, M, Kincses, T, Matthews, PM. Rapid modulation of GABA concentration in human sensorimotor cortex during motor learning. J Neurophysiol. 2006;95:1639-1644.
Google Scholar | Crossref | Medline | ISI41. Kidgell, DJ, Frazer, AK, Rantalainen, T, et al. Increased cross-education of muscle strength and reduced corticospinal inhibition following eccentric strength training. Neuroscience. 2015;300:566-575.
Google Scholar | Crossref | Medline42. Wang, Y, Cao, N, Lin, Y, Chen, R, Zhang, J. Hemispheric differences in functional interactions between the dorsal lateral prefrontal cortex and ipsilateral motor cortex. Front Hum Neurosci. 2020;14:202.
Google Scholar | Crossref | Medline43. Miller, EK, Cohen, JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24:167-202.
Google Scholar | Crossref | Medline | ISI44. Duque, J, Labruna, L, Verset, S, Olivier, E, Ivry, RB. Dissociating the role of prefrontal and premotor cortices in controlling inhibitory mechanisms during motor preparation. J Neurosci. 2012;32(3):806-816.
Google Scholar | Crossref | Medline | ISI45. Jin, Y, Lee, J, Kim, S, Yoon, B. Noninvasive brain stimulation over M1 and DLPFC cortex enhances the learning of bimanual isometric force control. Hum Mov Sci. 2019;66:73-83.
Google Scholar | Crossref | Medline46. Kantak, SS, Sullivan, KJ, Fisher, BE, Knowlton, BJ, Winstein, CJ. Neural substrates of motor memory consolidation depend on practice structure. Nat Neurosci. 2010;13:923-925.
Google Scholar | Crossref | Medline | ISI47. Netz, J, Ziemann, U, Hömberg, V. Hemispheric asymmetry of transcallosal inhibition in man. Exp Brain Res. 1995;104(3):527-533.
Google Scholar | Crossref | Medline48. Hickok, G, Poeppel, D. Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition. 2004;92(1–2):67-99.
Google Scholar | Crossref | Medline | ISI49. Engel, A, Burke, M, Fiehler, K, Bien, S, Rösler, F. Motor learning affects visual movement perception. Eur J Neurosci. 2008;27(9):2294-2302.
Google Scholar | Crossref | Medline

Comments (0)

No login
gif