1. Chen, R, Corwell, B, Yaseen, Z, Hallett, M, Cohen, LG. Mechanisms of cortical reorganization in lower-limb amputees. J Neurosci. 1998;18(9):3443-3450.
Google Scholar |
Crossref |
Medline2. Ferreri, F, Guerra, A, Rossini, PM. Neurophysiological markers of plastic brain reorganization following central and peripheral lesions. Arch Ital Biol. 2014;152(4):216-238.
Google Scholar |
Medline3. Xie, H, Kane, JT, Dennis, MJ, et al. Case series evidence for changed interhemispheric relationships in cortical structure in some amputees. J Clin Neurosci. 2013;20(4):523-526.
Google Scholar |
Crossref |
Medline4. Jiang, G, Yin, X, Li, C, et al. The plasticity of brain gray matter and white matter following lower limb amputation. Neural Plast. 2015;2015:1-10.
Google Scholar |
Crossref5. Draganski, B, Moser, T, Lummel, N, et al. Decrease of thalamic gray matter following limb amputation. Neuroimage. 2006;31(3):951-957.
Google Scholar |
Crossref |
Medline6. Jiang, G, Li, C, Wu, J, et al. Progressive thinning of visual motion area in lower limb amputees. Front Hum Neurosci. 2016;10(79):1-6.
Google Scholar |
Medline7. Zhang, J, Zhang, Y, Wang, L, et al. Brain functional connectivity plasticity within and beyond the sensorimotor network in lower-limb amputees. Front Hum Neurosci. 2018;12(10):1-11.
Google Scholar |
Medline8. Li, Z, Li, C, Fan, L, et al. Altered microstructure rather than morphology in the corpus callosum after lower limb amputation. Sci Rep. 2017;7:44780.
Google Scholar |
Crossref |
Medline9. Makin, TR, Flor, H. Brain (re)organisation following amputation: implications for phantom limb pain. Neuroimage. 2020;218:116943.
Google Scholar |
Crossref |
Medline10. Schwenkreis, P, Pleger, B, Cornelius, B, et al. Reorganization in the ipsilateral motor cortex of patients with lower limb amputation. Neurosci Lett. 2003;349:187-190.
Google Scholar |
Crossref |
Medline11. Hordacre, B, Bradnam, L. Reorganisation of primary motor cortex in a transtibial amputee during rehabilitation: a case report. Clin Neurophysiol. 2013;124(9):1919-1921.
Google Scholar |
Crossref |
Medline12. Hordacre, B, Bradnam, LV, Barr, C, Patritti, BL, Crotty, M. Ipsilateral corticomotor excitability is associated with increased gait variability in unilateral transtibial amputees. Eur J Neurosci. 2014;40(2):2454-2462.
Google Scholar |
Crossref |
Medline13. Mizuguchi, N, Nakagawa, K, Tazawa, Y, Kanosue, K, Nakazawa, K. Functional plasticity of the ipsilateral primary sensorimotor cortex in an elite long jumper with below-knee amputation. NeuroImage Clin. 2019;23:101847.
Google Scholar |
Crossref |
Medline14. Zaaimi, B, Edgley, SA, Soteropoulos, DS, Baker, SN. Changes in descending motor pathway connectivity after corticospinal tract lesion in macaque monkey. Brain. 2012;135(7):2277-2289.
Google Scholar |
Crossref |
Medline15. Soteropoulos, DS, Edgley, SA, Baker, SN. Lack of evidence for direct corticospinal contributions to control of the ipsilateral forelimb in monkey. J Neurosci. 2011;31(31):11208-11219.
Google Scholar |
Crossref |
Medline16. Alawieh, A, Tomlinson, S, Adkins, D, Kautz, S, Feng, W. Preclinical and clinical evidence on ipsilateral corticospinal projections: implication for motor recovery. Transl Stroke Res. 2017;8(6):529-540.
Google Scholar |
Crossref |
Medline17. Jang, S, Choi, B, Kim, S, Chang, C, Jung, Y, Yeo, S. Injury of the corticoreticular pathway in subarachnoid haemorrhage after rupture of a cerebral artery aneurysm. J Rehabil Med. 2015;47(2):133-137.
Google Scholar |
Crossref |
Medline18. Takenobu, Y, Hayashi, T, Moriwaki, H, Nagatsuka, K, Naritomi, H, Fukuyama, H. Motor recovery and microstructural change in rubro-spinal tract in subcortical stroke. NeuroImage Clin. 2014;4:201-208.
Google Scholar |
Crossref |
Medline19. Jang, SH . A review of the ipsilateral motor pathway as a recovery mechanism in patients with stroke. NeuroRehabilitation. 2009;24(4):315-320.
Google Scholar |
Crossref |
Medline20. Pundik, S, McCabe, JP, Hrovat, K, et al. Recovery of post stroke proximal arm function, driven by complex neuroplastic bilateral brain activation patterns and predicted by baseline motor dysfunction severity. Front Hum Neurosci. 2015;9:394.
Google Scholar |
Crossref |
Medline21. Cleland, BT, Madhavan, S. Ipsilateral motor pathways to the lower limb after stroke: insights and opportunities. J Neurosci Res. 2021;99(6):1565-1578.
Google Scholar |
Crossref |
Medline22. Nishimura, Y, Isa, T. Cortical and subcortical compensatory mechanisms after spinal cord injury in monkeys. Exp Neurol. 2011;235:152-161.
Google Scholar |
Crossref |
Medline23. Lundell, H, Christensen, MS, Barthélemy, D, Willerslev-Olsen, M, Biering-Sørensen, F, Nielsen, JB. Cerebral activation is correlated to regional atrophy of the spinal cord and functional motor disability in spinal cord injured individuals. Neuroimage. 2011;54:1254-1261.
Google Scholar |
Crossref |
Medline24. Philip, BA, Frey, SH. Compensatory changes accompanying chronic forced use of the nondominant hand by unilateral amputees. J Neurosci. 2014;34(10):3622-3631.
Google Scholar |
Crossref |
Medline25. Nakata, H, Yoshie, M, Miura, A, Kudo, K. Characteristics of the athletes’ brain: evidence from neurophysiology and neuroimaging. Brain Res Rev. 2010;62(2):197-211.
Google Scholar |
Crossref |
Medline26. Dayan, E, Cohen, LG. Neuroplasticity subserving motor skill learning. Neuron. 2011;72(3):443-454.
Google Scholar |
Crossref |
Medline |
ISI27. Callan, DE, Naito, E. Neural processes distinguishing elite from expert and novice athletes. Cognit Behav Neurol. 2014;27(4):183-188.
Google Scholar |
Crossref |
Medline28. Guillot, A, Collet, C, Nguyen, VA, Malouin, F, Richards, C, Doyon, J. Brain activity during visual versus kinesthetic imagery: an fMRI study. Hum Brain Mapp. 2008;30(7):2157-2172.
Google Scholar |
Crossref29. Draganski, B, Moser, T, Lummel, N, et al. Decrease of thalamic gray matter following limb amputation. Neuroimage. 2006;31(3):951-957.
Google Scholar |
Crossref |
Medline30. Di Vita, A, Boccia, M, Palermo, L, et al. Cerebellar grey matter modifications in lower limb amputees not using prosthesis. Sci Rep. 2018;8(1):370-377.
Google Scholar |
Crossref |
Medline31. Kapreli, E, Athanasopoulos, S, Papathanasiou, M, et al. Lower limb sensorimotor network: issues of somatotopy and overlap. Cortex. 2007;43(2):219-232.
Google Scholar |
Crossref |
Medline |
ISI32. Marquis, R, Muller, S, Lorio, S, et al. Spatial resolution and imaging encoding fMRI settings for optimal cortical and subcortical motor somatotopy in the human brain. Front Neurosci. 2019;13:571.
Google Scholar |
Crossref |
Medline33. Krings, T, Töpper, R, Foltys, H, et al. Cortical activation patterns during complex motor tasks in piano players and control subjects. A functional magnetic resonance imaging study. Neurosci Lett. 2000;278(3):189-193.
Google Scholar |
Crossref |
Medline34. Humberstone, M, Sawle, GV, Clare, S, et al. Functional magnetic resonance imaging of single motor events reveals human presupplementary motor area. Ann Neurol. 1997;42(4):632-637.
Google Scholar |
Crossref |
Medline35. Welniarz, Q, Dusart, I, Roze, E. The corticospinal tract: evolution, development, and human disorders. Dev Neurobiol. 2017;77(7):810-829.
Google Scholar |
Crossref |
Medline36. Jang, SH, Lee, SJ. Corticoreticular tract in the human brain: a mini review. Front Neurol. 2019;10:1188.
Google Scholar |
Crossref |
Medline37. Hétu, S, Grégoire, M, Saimpont, A, et al. The neural network of motor imagery: an ALE meta-analysis. Neurosci Biobehav Rev. 2013;37(5):930-949.
Google Scholar |
Crossref |
Medline |
ISI38. Hanakawa, T, Dimyan, MA, Hallett, M. Motor planning, imagery, and execution in the distributed motor network: a time-course study with functional MRI. Cerebr Cortex. 2008;18:2775-2788.
Google Scholar |
Crossref |
Medline39. Jacobs, KM, Donoghue, JP. Reshaping the cortical motor map by unmasking latent intracortical connections. Science. 1991;251:944-947.
Google Scholar |
Crossref |
Medline |
ISI40. Floyer-Lea, A, Wylezinska, M, Kincses, T, Matthews, PM. Rapid modulation of GABA concentration in human sensorimotor cortex during motor learning. J Neurophysiol. 2006;95:1639-1644.
Google Scholar |
Crossref |
Medline |
ISI41. Kidgell, DJ, Frazer, AK, Rantalainen, T, et al. Increased cross-education of muscle strength and reduced corticospinal inhibition following eccentric strength training. Neuroscience. 2015;300:566-575.
Google Scholar |
Crossref |
Medline42. Wang, Y, Cao, N, Lin, Y, Chen, R, Zhang, J. Hemispheric differences in functional interactions between the dorsal lateral prefrontal cortex and ipsilateral motor cortex. Front Hum Neurosci. 2020;14:202.
Google Scholar |
Crossref |
Medline43. Miller, EK, Cohen, JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24:167-202.
Google Scholar |
Crossref |
Medline |
ISI44. Duque, J, Labruna, L, Verset, S, Olivier, E, Ivry, RB. Dissociating the role of prefrontal and premotor cortices in controlling inhibitory mechanisms during motor preparation. J Neurosci. 2012;32(3):806-816.
Google Scholar |
Crossref |
Medline |
ISI45. Jin, Y, Lee, J, Kim, S, Yoon, B. Noninvasive brain stimulation over M1 and DLPFC cortex enhances the learning of bimanual isometric force control. Hum Mov Sci. 2019;66:73-83.
Google Scholar |
Crossref |
Medline46. Kantak, SS, Sullivan, KJ, Fisher, BE, Knowlton, BJ, Winstein, CJ. Neural substrates of motor memory consolidation depend on practice structure. Nat Neurosci. 2010;13:923-925.
Google Scholar |
Crossref |
Medline |
ISI47. Netz, J, Ziemann, U, Hömberg, V. Hemispheric asymmetry of transcallosal inhibition in man. Exp Brain Res. 1995;104(3):527-533.
Google Scholar |
Crossref |
Medline48. Hickok, G, Poeppel, D. Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition. 2004;92(1–2):67-99.
Google Scholar |
Crossref |
Medline |
ISI49. Engel, A, Burke, M, Fiehler, K, Bien, S, Rösler, F. Motor learning affects visual movement perception. Eur J Neurosci. 2008;27(9):2294-2302.
Google Scholar |
Crossref |
Medline
Comments (0)