Harmonic Cancellation—A Fundamental of Auditory Scene Analysis

Akeroyd, M. A. (2004). The across frequency independence of equalization of interaural time delay in the equalization-cancellation model of binaural unmasking. Journal of the Acoustical Society of America, 116, 1135–1148. https://doi.org/10.1121/1.1768959
Google Scholar | Crossref | Medline Albrecht, O., Dondzillo, A., Mayer, F., Thompson, J. A., Klug, A. (2014). Inhibitory projections from the ventral nucleus of the trapezoid body to the medial nucleus of the trapezoid body in the mouse. Frontiers in Neural Circuits, 8, 83. https://doi.org/10.3389/fncir.2014.00083
Google Scholar | Crossref | Medline al Haytham, I. 1030 (2002) Book of optics (in Hatfield).
Google Scholar Arehart, K. H., Rossi-Katz, J., Swensson-Prutsman, J. (2005). Double-vowel perception in listeners with Cochlear hearing loss: differences in fundamental frequency, ear of presentation, and relative amplitude. Journal of Speech, Language, and Hearing Research, 48, 236–252. https://doi.org/10.1044/1092-4388(2005/017)
Google Scholar | Crossref | Medline Arehart, K. H., Souza, P. E., Muralimanohar, R. K., Miller, C. W. (2011). Effects of age on concurrent vowel perception in acoustic and simulated electroacoustic hearing. Journal of Speech, Language, and Hearing Research, 54, 190–210. https://doi.org/10.1044/1092-4388(2010/09-0145)
Google Scholar | Crossref | Medline Arnott, R., Wallace, M., Shackleton, T., Palmer, A. (2004). Onset neurones in the anteroventral cochlear nucleus project to the dorsal cochlear nucleus. Journal of the Association for Research in Otolaryngology, 5, 153–170. https://doi.org/10.1007/s10162-003-4036-8
Google Scholar | Crossref | Medline Assmann, P. F., Summerfield, Q. (1990). Modeling the perception of concurrent vowels: Vowels with different fundamental frequencies. Journal of the Acoustical Society of America, 88, 680–697. https://doi.org/10.1121/1.399772
Google Scholar | Crossref | Medline | ISI Assmann, P. F., Summerfield, Q. (1994). The contribution of waveform interactions to the perception of concurrent vowels. Journal of the Acoustical Society of America, 95, 471–484. https://doi.org/10.1121/1.408342
Google Scholar | Crossref | Medline Beiderbeck, B., Myoga, M. H., Müller, N. I. C., Callan, A. R., Friauf, E., Grothe, B., Pecka, M. (2018). Precisely timed inhibition facilitates action potential firing for spatial coding in the auditory brainstem. Nature Communications, 9, 1771. https://doi.org/10.1038/s41467-018-04210-y
Google Scholar | Crossref | Medline Bernstein, J. G. W., Oxenham, A. J. (2008). Harmonic segregation through mistuning can improve fundamental frequency discrimination. Journal of the Acoustical Society of America, 124, 1653–1667. https://doi.org/10.1121/1.2956484
Google Scholar | Crossref | Medline | ISI Best, V., Roverud, E., Baltzell, L., Rennies, J., Lavandier, M. (2019). The importance of a broad bandwidth for understanding “glimpsed” speech. Journal of the Acoustical Society of America, 146, 3215–3221. https://doi.org/10.1121/1.5131651
Google Scholar | Crossref | Medline Beutelmann, R., Brand, T. (2006). Prediction of speech intelligibility in spatial noise and reverberation for normal-hearing and hearing-impaired listeners. Journal of the Acoustical Society of America, 120, 331–342. https://doi.org/10.1121/1.2202888
Google Scholar | Crossref | Medline | ISI Beutelmann, R., Brand, T., Kollmeier, B. (2010). Revision, extension, and evaluation of a binaural speech intelligibility model. Journal of the Acoustical Society of America, 127, 2479–2497. https://doi.org/10.1121/1.3295575
Google Scholar | Crossref | Medline | ISI Binns, C., Culling, J. F. (2007). The role of fundamental frequency contours in the perception of speech against interfering speech. Journal of the Acoustical Society of America, 122, 1765–1776. https://doi.org/10.1121/1.2751394
Google Scholar | Crossref | Medline Bowling, D. L., Purves, D. (2015). A biological rationale for musical consonance. Proceedings of the National Academy of Sciences, 112, 11155–11160. https://doi.org/10.1073/pnas.1505768112
Google Scholar | Crossref | Medline Breebaart, J., van de Par, S., Kohlrausch, A. (2001). Binaural processing model based on contralateral inhibition. I. Model structure. Journal of the Acoustical Society of America, 110, 1074–1088. https://doi.org/10.1121/1.1383297
Google Scholar | Crossref | Medline | ISI Bregman, A. S. (1990). Auditory scene analysis. MIT Press.
Google Scholar | Crossref Brokx, J., Nooteboom, S. (1982). Intonation and the perceptual separation of simultaneous voices. Journal of Phonetics, 10, 23–36. https://doi.org/10.1016/S0095-4470(19)30909-X
Google Scholar | Crossref | ISI Campbell, J. K., O’Rourke, M., Slater, M. H. (eds) (2011). Carving nature at its joints: Natural kinds in metaphysics and science. MIT Press.
Google Scholar | Crossref Carcagno, S., Lakhani, S., Plack, C. J. (2019). Consonance perception beyond the traditional existence region of pitch. Journal of the Acoustical Society of America, 146, 2279–2290. https://doi.org/10.1121/1.5127845
Google Scholar | Crossref | Medline Carney, L. H., Heinz, M. G., Evilsizer, M. E., Gilkey, R. H., Colburn, H. S. (2002). Auditory phase opponency: A temporal model for masked detection at low frequencies. Acta Acust. Acust., 88, 15.
Google Scholar Carney, L. H., Li, T., McDonough, J. M. (2015). Speech coding in the brain: Representation of vowel formants by midbrain neurons tuned to sound fluctuations 1,2,3. eNeuro, 2(4). e0004-15.2015 1X12. https://doi.org/10.1523/ENEURO.0004-15.2015
Google Scholar | Crossref | Medline Caspari, F., Baumann, V. J., Garcia-Pino, E., Koch, U. (2015). Heterogeneity of intrinsic and synaptic properties of neurons in the ventral and dorsal parts of the ventral nucleus of the lateral lemniscus. Frontiers in Neural Circuits, 9, 74. https://doi.org/10.3389/fncir.2015.00074
Google Scholar | Crossref | Medline Chalikia, M. H., Bregman, A. S. (1993). The perceptual segregation of simultaneous vowels with harmonic, shifted, or random components. Perception & Psychophysics, 53(2), 125–133. https://doi.org/10.3758/BF03211722
Google Scholar | Crossref | Medline Chase, S. M., Young, E. D. (2007). First-spike latency information in single neurons increases when referenced to population onset. Proceedings of the National Academy of Sciences, 104(12), 5175–5180. https://doi.org/10.1073/pnas.0610368104
Google Scholar | Crossref | Medline Chen, C., Read, H. L., Escabí, M. A. (2019). A temporal integration mechanism enhances frequency selectivity of broadband inputs to inferior colliculus. PLOS Biology, 17(6), e2005861. https://doi.org/10.1371/journal.pbio.2005861
Google Scholar | Crossref | Medline Colburn, H. S., Durlach, N. I. (1965). Time-intensity relations in binaural unmasking. Journal of the Acoustical Society of America, 38(1), 93–103. https://doi.org/10.1121/1.1909625
Google Scholar | Crossref | Medline Cooke, M. (2006). A glimpsing model of speech perception in noise. Journal of the Acoustical Society of America, 119(3), 1562–1573. https://doi.org/10.1121/1.2166600
Google Scholar | Crossref | Medline | ISI Cooke, M., Morris, A., Green, P. (1997). Missing data techniques for robust speech recognition. In IEEE International Conference on Acoustics, Speech, and Signal Processing, Munich, Germany (Vol. II) (pp. 863–866).
Google Scholar Cosentino, S., Marquardt, T., McAlpine, D., Culling, J. F., Falk, T. H. (2014). A model that predicts the binaural advantage to speech intelligibility from the mixed target and interferer signals. Journal of the Acoustical Society of America, 135(2), 796–807. https://doi.org/10.1121/1.4861239
Google Scholar | Crossref | Medline Culling, J. F. (2007). Evidence specifically favoring the equalization-cancellation theory of binaural unmasking. The Journal of the Acoustical Society of America, 122(5), 2803–2813. https://doi.org/10.1121/1.2785035
Google Scholar | Crossref | Medline Culling, J. F., Darwin, C. J. (1993). Perceptual separation of simultaneous vowels: Within and across-formant grouping by F0. Journal of the Acoustical Society of America, 93(6), 3454–3467. https://doi.org/10.1121/1.405675
Google Scholar | Crossref | Medline Culling, J. F., Darwin, C. J. (1994). Perceptual and computational separation of simultaneous vowels: Cues arising from low-frequency beating. Journal of the Acoustical Society of America, 95(3), 1559–1569. https://doi.org/10.1121/1.408543
Google Scholar | Crossref | Medline Culling, J. F., Hodder, K. I., Toh, C. Y. (2003). Effects of reverberation on perceptual segregation of competing voices. Journal of the Acoustical Society of America, 114(5), 2871. https://doi.org/10.1121/1.1616922
Google Scholar | Crossref | Medline Culling, J. F., Summerfield, A. Q., Marshall, D. H. (1998). Dichotic pitches as illusions of binaural unmasking I. Huggins’ pitch and the ”binaural edge pitch”. Journal of the Acoustical Society of America, 103(6), 3509–3526. http://asa.scitation.org/doi/10.1121/1.423059 https://doi.org/10.1121/1.423059
Google Scholar | Crossref | Medline Culling, J. F., Summerfield, Q. (1994). Binaural segregation of concurrent sounds involves within-channel rather than across-channel processes. Journal of the Acoustical Society of America, 95(5), 2915–2915. http://asa.scitation.org/doi/10.1121/1.409275 https://doi.org/10.1121/1.409275
Google Scholar | Crossref Culling, J. F., Summerfield, Q., Marshall, D. H. (1994). Effects of simulated reverberation on the use of binaural cues and fundamental-frequency differences for separating concurrent vowels. Speech Communication, 14, 71–95. https://linkinghub.elsevier.com/retrieve/pii/0167639394900582 https://doi.org/10.1016/0167-6393(94)90058-2
Google Scholar | Crossref Darwin, C. J., Bethell-Fox, C. E. (1977). Pitch continuity and speech source attribution. Journal of Experimental Psychology: Human Perception and Performance, 3, 665–672. https://doi.org/10.1037/0096-1523.3.4.665
Google Scholar | Crossref | ISI Dau, T., Kollmeier, B., Kohlrausch, A. (1997). Modeling auditory processing of amplitude modulation. I.Detection and masking with narrow-band carriersa. J. Acoust. Soc. Am., 102, 2892–2905. https://doi.org/10.1121/1.420344
Google Scholar | Crossref | Medline | ISI Davis, K. A., Voigt, H. F. (1997). Evidence of stimulus-dependent correlated activity in the dorsal cochlear nucleus of decerebrate gerbils. Journal of Neurophysiology, 78(1), 229–247. https://www.physiology.org/doi/10.1152/jn.1997.78.1.229
Google Scholar | Crossref | Medline de Boer, E. (1976) On the “residue” and auditory pitch perception. In Keidel, W., Neff, W. (Eds) Handbook of sensory physiology, Vol. v-3 (pp. 479–583). Springer-Verlag.
Google Scholar | Crossref de Cheveigné, A. (1993). Separation of concurrent harmonic sounds: Fundamental frequency estimation and a time-domain cancellation model of auditory processing. Journal of the Acoustical Society of America, 93, 3271–3290. https://doi.org/10.1121/1.405712
Google Scholar | Crossref de Cheveigné, A. (1997a). Concurrent vowel identification III: A neural model of harmonic interference cancellation. Journal of the Acoustical Society of America, 101, 2857–2865. https://doi.org/10.1121/1.419480
Google Scholar | Crossref de Cheveigné, A. (1997b). Ten experiments on vowel segregation. (Tech. Rep.) ATR Human Information Processing Research Labs technical report TR-H-217. https://hal.archives-ouvertes.fr/hal-03090891.
Google Scholar de Cheveigné, A. (1998). Cancellation model of pitch perception. Journal of the Acoustical Society of America, 103, 1261–1271. http://audition.ens.fr/adc/pdf/1998_JASA_pitch.pdf https://doi.org/10.1121/1.423232
Google Scholar | Crossref | Medline de Cheveigné, A. (1999a). Pitch shifts of mistuned partials: A time-domain model. Journal of the Acoustical Society of America, 106(2), 887–897. http://asa.scitation.org/doi/10.1121/1.427104 https://doi.org/10.1121/1.427104
Google Scholar | Crossref | Medline de Cheveigné, A. (1999b). Vowel-specific effects in concurrent vowel identification. Journal of the Acoustical Society of America, 106, 327–340.
Google Scholar | Crossref | Medline de Cheveigné, A. (1999c). Waveform interactions and the segregation of concurrent vowels. Journal of the Acoustical Society of America, 106, 2959–2972. https://doi.org/10.1121/1.428115
Google Scholar

留言 (0)

沒有登入
gif