Identification of Terpenoids From Abrus precatorius Against Parkinson’s Disease Proteins Using In Silico Approach

1. Sveinbjornsdottir, S . The clinical symptoms of Parkinson’s disease. J Neurochem. 2016;139:318-324.
Google Scholar | Crossref | Medline | ISI2. Turner, H, Chueh, D, Ortiz, T, Stokes, AJ, Small-Howard, AL. Cannabinoid therapeutics in Parkinson’s disease: promise and paradox. J Herbs Spices Med Plants. 2017;23:231-248.
Google Scholar | Crossref3. Mbah, CJ . Parkinson’s disease (Parkinsonism): levodopa, a sine qua non therapeutic agent in the treatment of Parkinsonism. EC Pharmacol Toxicol. 2020;8:57-63.
Google Scholar4. Samii, A, Nutt, JG, Ransom, BR. Parkinson’s disease. Lancet. 2004;363:1783-1793.
Google Scholar | Crossref | Medline | ISI5. Barichella, M, Cereda, E, Pezzoli, G. Major nutritional issues in the management of Parkinson’s disease. Mov Disord. 2009;24:1881-1892.
Google Scholar | Crossref | Medline6. Ahlskog, JE . Does vigorous exercise have a neuro-protective effect in Parkinson’s disease? Neurology. 2011;77:288-294.
Google Scholar | Crossref | Medline | ISI7. Amro, MS, Teoh, SL, Norzana, AG, Srijit, D. The potential role of herbal products in the treatment of Parkinson’s disease. Clin Ter. 2018;169:e23-e33.
Google Scholar | Medline8. Arora, R, Gill, NS, Kaur, S, Jain, AD. Phytopharmacological evaluation of ethanolic extract of the seeds of Abrus precatorius Linn. J Pharmacol Toxicol. 2011;6:580-588.
Google Scholar | Crossref9. Raskin, I, Ribnicky, DM, Komarnytsky, S, et al. Plants and human health in the twenty-first century. Trends Biotechnol. 2002;20:522-531.
Google Scholar | Crossref | Medline10. Yusuf, WH, Tanimowo, O, Abubakar, SA, Ahmad, FB. Effect of aqueous extract of leaves of Abrus precatorius (Linn) on some biochemical parameters in normal and alloxan-induced diabetic rats. Asian J Biochem. 2017;12:44-48.
Google Scholar | Crossref11. Mondal, S, Ghosh, D, Anusur, KC, Ganapaty, S. Toxicological studies and Assessment of pharmacological activities of Abrus precatorius L. (Fabaceae) ethanol leaves extract in the management of pain, psychiatric and neurological conditions: in vivo study. J Appl Pharm Sci. 2017;7:207-216.
Google Scholar12. Jiang, Z, Kempinski, C, Chappell, J. Extraction and analysis of terpenes / terpenoids. Curr Protoc Plant Biol. 2016;1:345-358.
Google Scholar | Crossref | Medline13. Akinloye, OA, Akinloye, DI, Lawal, MA, Shittu, MT, Metibemu, DS. Terpenoids from Azadirachta indica are potent inhibitors of Akt: validation of the anticancer potentials in hepatocellular carcinoma in male Wistar rats. J Food Biochem. 2021;45:e13559.
Google Scholar | Crossref | Medline14. Cheng, F, Li, W, Zhou, Y, et al. AdmetSAR: a comprehensive source and free tool for evaluating chemical ADMET properties. J Chem Inf Model. 2012;52:3099-3105.
Google Scholar | Crossref | Medline15. Daina, A, Michielin, O, Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717.
Google Scholar | Crossref | Medline16. Trott, O, Olson, AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455-461.
Google Scholar | Medline | ISI17. Schrodinger Release 2018-5: Desmond Molecular Dynamics System . New York, NY: Maestro- Desmond Interoperability Tools, Schrödinger; D. E. Shaw Research, 2018.
Google Scholar18. Anand, SA, Loganathan, C, Saravanan, K, Kabilan, S. Comparison of molecular docking and molecular dynamics simulations of 1,3-thiazin-4-one with MDM2 protein. Int Lett Chem Phy Astron. 2015;60:161-167.
Google Scholar | Crossref19. Vijayakumar, S, Manogar, P, Prabhu, S, Sanjeevkumar Singh, RA. Novel ligand-based docking; molecular dynamic simulations; and absorption, distribution, metabolism, and excretion approach to analyzing potential acetylcholinesterase inhibitors for Alzheimer’s disease. J Pharm Anal. 2018;8:413-420.
Google Scholar | Crossref | Medline20. Cai, YZ, Luo, Q, Sun, M, Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004;74:2157-2184.
Google Scholar | Crossref | Medline | ISI21. Kelly, GS . Squalene and its potential clinical uses. Altern Med Rev. 1999;4:29-36.
Google Scholar | Medline22. Kabuto, H, Yamanushi, TT, Janjua, N, Takayama, F, Mankura, M. Effects of squalene/squalane on dopamine levels, antioxidant enzyme activity and fatty acid composition in the striatum of Parkinson’s disease mouse model. J Oleo Sci. 2013;62:21-28.
Google Scholar | Crossref | Medline23. Lei, Y, Fu, P, Jun, X, Cheng, P. Pharmacological properties of geraniol – a review. Planta Med. 2019;85:48-55.
Google Scholar | Crossref | Medline24. Khan, AQ, Khan, R, Qamar, W, et al. Geraniol attenuates 12-0-tetradecanoylphorbol-13-acetate (TPA)-induced oxidative stress and inflammation in mouse skin: possible role of p38 MAP kinase and NF-kB. Exp Mol Pathol. 2013;94:419-429.
Google Scholar | Crossref | Medline25. Chaturvedi, PR, Decker, CJ. A prediction of pharmacokinetic properties using experimental approaches during early drug discovery. Curr Opin Chem Biol. 2001;5:452-463.
Google Scholar | Crossref | Medline | ISI26. Hou, TJ, Xu, XJ. ADME evaluation in drug discovery. 3. Modeling blood-brain barrier partitioning using simple molecular descriptors. J Chem Inf Comput Sci. 2003;43:2137-2152.
Google Scholar | Crossref | Medline27. Zhang, X, Liu, T, Fan, X, Ai, N. In silico modeling on ADME properties of natural products: classification models for blood-brain barrier permeability, its application to traditional Chinese medicine and in vitro experimental validation. J Mol Graph Model. 2017;75:347-354.
Google Scholar | Crossref | Medline28. Yan, A, Wang, Z, Cai, Z. Prediction of human intestinal absorption by GA feature selection and support vector machine regression. Int J Mol Sci. 2008;9:1961-1976.
Google Scholar | Crossref | Medline29. Akinloye, OA, Akinloye, DI, Onigbinde, SB, Metibemu, DS. Phytosterols demonstrate selective inhibition of COX-2: in-vivo and in-silico studies of Nicotiana tabacum. Bioorg Chem. 2020;102:104037.
Google Scholar | Crossref | Medline30. Lipinski, CA, Lombardo, FB, Dominy, W, Feeney, PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv. 2001;46:3-26.
Google Scholar | Crossref | Medline | ISI31. Kumar, HSS, Kumar, SR, Kumar, NN, Ajith, S. Molecular docking studies of gyrase inhibitors: weighing earlier screening bedrock. In Silico Pharmacol. 2021;9:2.
Google Scholar | Crossref | Medline32. Elekofehinti, OO, Iwaloye, O, Josiah, SS, Lawal, AO, Akinjiyan, MO, Ariyo, EO. Molecular docking studies, molecular dynamics and ADME/tox reveal therapeutic potentials of STOCK1N‑69160 against papain‑like protease of SARS‑CoV‑2. Mol Divers. 2021;25:1761-1773. doi:10.1007/s11030-020-10151-w.
Google Scholar | Crossref | Medline33. Lopez, A, Tarrago, T, Giralt, E. Low molecular weight inhibitors of prolyl oligopeptidase: a review of compounds patented from 2003 to 2010. Expert Opin Ther Pat. 2011;21:1023-1044.
Google Scholar | Crossref | Medline34. Wojtunik-Kulesza, KA, Targowska-Duda, K, Klimek, K, et al. Volatile terpenoids as potential drug leads in Alzheimer’s disease. Open Chem. 2017;15:332-343.
Google Scholar | Crossref35. Kumar, R, Bavi, R, Jo, MG, et al. New compounds identified through in silico approaches reduce the α-synuclein expression by inhibiting prolyl oligopeptidase in vitro. Sci Rep. 2017;7:10827.
Google Scholar | Crossref | Medline36. Baell, JB, Congreve, M, Leeson, P, Abad-Zapatero, C. Ask the experts: past, present and future of the rule of five. Future Med Chem. 2013;5:745-752.
Google Scholar | Crossref | Medline37. Bhattacharjee, N, Biswas, P. Statistical analysis and molecular dynamics simulations of ambivalent α-helices. BMC Bioinformatics. 2010;11:519.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif