Synthesis, crystal structure and magnetic properties of a one‐dimensional Mn2+ complex constructed from (+)‐dibenzoyltartaric acid and 2,2′‐bipyridine

The self-assembly reaction of (+)-dibenzoyltartaric acid (d-H2DBTA) with 2,2′-bipyridine (bpy) and Mn(CH3CO2)2·4H2O yielded a new coordination polymer, namely, catena-poly[[[diaqua(2,2′-bipyridine-κ2N,N′)manganese(II)]-μ-2,3-bis(benzoyloxy)butanedioato-κ2O2:O3] dihydrate], n or n, (I). Complex (I) has been characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis (TGA) and single-crystal and powder X-ray diffraction. It crystallizes in the orthorhombic space group P212121. In the complex, the Mn2+ cation displays a distorted octahedral geometry, formed from two carboxylate O atoms of two DBTA2− ligands, two cis-oriented N atoms from one chelating 2,2′-bipyridine ligand and two trans-oriented O atoms from coordinated water molecules. The polymer displays a 1D chain with an Mn…Mn distance of 9.428 (1) Å. Due to the presence of flexible polycarboxylate and rigid bipyridyl ligands in the molecular structure, a high thermal stability of the complex is attained. The magnetic properties of (I) were analyzed based on the mononuclear Mn2+ model due to the long intramolecular Mn…Mn distance. The zero field splitting (ZFS) contribution in the high-spin Mn2+ cation is almost negligible and there are weak antiferromagnetic couplings between 1D chains [zJ′ = −0.062 (5) cm−1], corresponding to an intermolecular Mn…Mn distance of 7.860 (2) Å.

Comments (0)

No login
gif