Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X. (2016). TensorFlow: Large-scale machine learning on heterogeneous distributed systems. arXiv, 1603.004467.
Google Scholar Allen, J. B. (1977). Short term spectral analysis, synthesis and modification by discrete Fourier transform. IEEE Transactions on Acoustics, Speech and Signal Processing, 25(3), 235–238.
https://doi.org/10.1109/TASSP.1977.1162950 Google Scholar |
Crossref ANSI . (2014). ANSI S3.22-2014, specification of hearing aid characteristics. American National Standards Institute.
Google Scholar Boyle, P. J., Buchner, A., Stone, M. A., Lenarz, T., Moore, B. C. J. (2009). Comparison of dual-time-constant and fast-acting automatic gain control (AGC) systems in cochlear implants. International Journal of Audiology, 48(4), 211–221.
https://doi.org/10.1080/14992020802581982 Google Scholar |
Crossref |
Medline Burkhard, M. D., Sachs, R. M. (1975). Anthropometric manikin for acoustic research. Journal of the Acoustical Society of America, 58(1), 214–222.
https://doi.org/10.1121/1.380648 Google Scholar |
Crossref |
Medline Chollet, F. (2015).
https://Github.Com/Fchollet/Keras. Last accessed March 2021.
Google Scholar Delfarah, M., Wang, D. L. (2017). Features for masking-based monaural speech separation in reverberant conditions. IEEE Transactions on Audio, Speech and Language Processing, 25(5), 1085–1094.
https://doi.org/10.1109/TASLP.2017.2687829 Google Scholar |
Crossref Digiovanni, J. J., Davlin, E. A., Nagaraj, N. K. (2011). Effects of transient noise reduction algorithms on speech intelligibility and ratings of hearing aid users. American Journal of Audiology, 20(2), 140–150.
https://doi.org/10.1044/1059-0889(2011/10-0007) Google Scholar |
Crossref |
Medline Dillon, H. (1996). Compression? Yes, but for low or high frequencies, for low or high intensities, and with what response times? Ear and Hearing, 17(4), 287–307.
https://doi.org/10.1097/00003446-199608000-00001 Google Scholar |
Crossref |
Medline Dingemanse, J. G., Vroegop, J. L., Goedegebure, A. (2018). Effects of a transient noise reduction algorithm on speech intelligibility in noise, noise tolerance and perceived annoyance in cochlear implant users. International Journal of Audiology, 57(5), 360–369.
https://doi.org/10.1080/14992027.2018.1425004 Google Scholar |
Crossref |
Medline Dyballa, K. H., Hehrmann, P., Hamacher, V., Lenarz, T., Buechner, A. (2016). Transient noise reduction in cochlear implant users: A multi-band approach. Audiology Research, 6(2), 28–35.
https://doi.org/10.4081/audiores.2016.154 Google Scholar |
Crossref Dyballa, K. H., Hehrmann, P., Hamacher, V., Nogueira, W., Lenarz, T., Buchner, A. (2015). Evaluation of a transient noise reduction algorithm in cochlear implant users. Audiology Research, 5(2), 44–49.
https://doi.org/10.4081/audiores.2015.116 Google Scholar |
Crossref Glasberg, B. R., Moore, B. C. J. (1990). Derivation of auditory filter shapes from notched-noise data. Hearing Research, 47(1–2), 103–138.
https://doi.org/10.1016/0378-5955(90)90170-T Google Scholar |
Crossref |
Medline |
ISI Goehring, T., Keshavarzi, M., Carlyon, R. P., Moore, B. C. J. (2019). Using recurrent neural networks to improve the perception of speech in non-stationary noise by people with cochlear implants. Journal of the Acoustical Society of America, 146(1), 705–718.
https://doi.org/10.1121/1.5119226 Google Scholar |
Crossref |
Medline Hirszhorn, A., Dov, D., Talmon, R., Cohen, I. (2012). Transient interference suppression in speech signals based on the OM-LSA algorithm. International workshop on acoustic signal enhancement, Aachen, Germany.
Google Scholar Hochreiter, S., Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.
https://doi.org/10.1162/neco.1997.9.8.1735 Google Scholar |
Crossref |
Medline |
ISI Keshavarzi, M., Baer, T., Moore, B. C. J. (2018). Evaluation of a multi-channel algorithm for reducing transient sounds. International Journal of Audiology, 57(8), 624–631.
https://doi.org/10.1080/14992027.2018.1470336 Google Scholar |
Crossref |
Medline Keshavarzi, M., Goehring, T., Turner, R. E., Moore, B. C. J. (2019). Comparison of effects on subjective speech intelligibility and sound quality of two algorithms for reducing babble: A deep recurrent neural network and spectral subtraction. Journal of the Acoustical Society of America, 145(3), 1493–1503.
https://doi.org/10.1121/1.5094765 Google Scholar |
Crossref |
Medline Keshavarzi, M., Goehring, T., Zakis, J., Turner, R. E., Moore, B. C. J. (2018). Use of a deep recurrent neural network to reduce wind noise: Effects on judged speech intelligibility and sound quality. Trends in Hearing, 22, 1–12.
https://doi.org/10.1177/2331216518770964 Google Scholar |
SAGE Journals Kingma, D. P., Ba, J. L. (2014). Adam: A method for stochastic optimization. arXiv, Preprint arXiv:1312.6199.
Google Scholar Korhonen, P., Kuk, F., Lau, C., Keenan, D., Schumacher, J., Nielsen, J. (2013). Effects of a transient noise reduction algorithm on speech understanding, subjective preference, and preferred gain. Journal of the American Academy of Audiology, 24(9), 845–858.
https://doi.org/10.3766/jaaa.24.9.8 Google Scholar |
Crossref |
Medline Ma, J., Hu, Y., Loizou, P. C. (2009). Objective measures for predicting speech intelligibility in noisy conditions based on new band-importance functions. Journal of the Acoustical Society of America, 125(5), 3387–3405.
https://doi.org/10.1121/1.3097493 Google Scholar |
Crossref |
Medline |
ISI Moore, B. C. J. (2008). The choice of compression speed in hearing aids: Theoretical and practical considerations, and the role of individual differences. Trends in Amplification, 12(2), 103–112.
https://doi.org/10.1177/1084713808317819 Google Scholar |
SAGE Journals Moore, B. C. J., Glasberg, B. R. (1988). A comparison of four methods of implementing automatic gain control (AGC) in hearing aids. British Journal of Audiology, 22(2), 93–104.
https://doi.org/10.3109/03005368809077803 Google Scholar |
Crossref |
Medline Moore, B. C. J., Glasberg, B. R. (1998). Use of a loudness model for hearing aid fitting. I. Linear hearing aids. British Journal of Audiology, 32(5), 317–335.
https://doi.org/10.3109/03005364000000083 Google Scholar |
Crossref |
Medline Moore, B. C. J., Glasberg, B. R., Stone, M. A. (1991). Optimization of a slow-acting automatic gain control system for use in hearing aids. British Journal of Audiology, 25(3), 171–182.
https://doi.org/10.3109/03005369109079851 Google Scholar |
Crossref |
Medline Moore, B. C. J., Sęk, A. (2013). Comparison of the CAM2 and NAL-NL2 hearing-aid fitting methods. Ear and Hearing, 34(1), 83–95.
https://doi.org/10.1097/AUD.0b013e3182650adf Google Scholar |
Crossref |
Medline |
ISI Moore, B. C. J., Stone, M. A., Alcantara, J. I. (2001). Comparison of the electroacoustic characteristics of five hearing aids. British Journal of Audiology, 35(5), 307–325.
https://doi.org/10.1080/00305364.2001.11745249 Google Scholar |
Crossref |
Medline Patterson, R. D., Allerhand, M. H., Giguère, C. (1995). Time-domain modeling of peripheral auditory processing: A modular architecture and a software platform. Journal of the Acoustical Society of America, 98(4), 1890–1894.
https://doi.org/10.1121/1.414456 Google Scholar |
Crossref |
Medline Relano-Iborra, H., May, T., Zaar, J., Scheidiger, C., Dau, T. (2016). Predicting speech intelligibility based on a correlation metric in the envelope power spectrum domain. Journal of the Acoustical Society of America, 140(4), 2670–2679.
https://doi.org/10.1121/1.4964505 Google Scholar |
Crossref |
Medline Srinivasan, S., Roman, N., Wang, D. (2006). Binary and ratio time-frequency masks for robust speech recognition. Speech Communication, 48(11), 1486–1501.
https://doi.org/10.1016/j.specom.2006.09.003 Google Scholar |
Crossref Stone, M. A., Moore, B. C. J., Alcántara, J. I., Glasberg, B. R. (1999). Comparison of different forms of compression using wearable digital hearing aids. Journal of the Acoustical Society of America, 106(6), 3603–3619.
https://doi.org/10.1121/1.428213 Google Scholar |
Crossref |
Medline |
ISI Stone, M. A., Moore, B .C. J. (1999). Tolerable hearing-aid delays. I. Estimation of limits imposed by the auditory path alone using simulated hearing losses. Ear and Hearing, 20(3), 182–192.
https://doi.org/10.1097/00003446-199906000-00002 Google Scholar |
Crossref |
Medline Stone, M. A., Moore, B. C. J. (2005). Tolerable hearing-aid delays: IV. Effects on subjective disturbance during speech production by hearing-impaired subjects. Ear and Hearing, 26(2), 225–235.
https://doi.org/10.1097/00003446-200504000-00009 Google Scholar |
Crossref |
Medline Stone, M. A., Moore, B. C., Meisenbacher, K., Derleth, R. P. (2008). Tolerable hearing aid delays. V. Estimation of limits for open canal fittings. Ear and Hearing, 29(4), 601–617.
https://doi.org/10.1097/AUD. 0b013e3181734ef2 Google Scholar |
Crossref |
Medline Taal, C., Hendriks, R., Heusdens, R., Jensen, J. (2011). An algorithm for intelligibility prediction of time-frequency weighted noisy speech. IEEE Transactions on Audio, Speech and Language Processing, 19(7), 2125–2136.
https://doi.org/10.1109/TASL.2011.2114881 Google Scholar |
Crossref Tan, C. T., Moore, B. C. J. (2004). Comparison of two forms of fast-acting compression using physical and subjective measures. Proceedings of the 18th International Congress on Acoustics, Kyoto, Japan, II-1393–1396.
Google Scholar
Comments (0)