Synthesis of fused Azo-linked 1, 2, 4-Triazole-3-Thione derivatives using Ag2S/RHA-MCM-41 nanocomposite

[1] Peyton L. R., Gallagher S., Hashemzadeh M., (2015), Triazole antifungals: A review. Drugs of Today. 51: 705-718.

[2] Kocyigit-Kaymakcioglu B., Ozgur Celen A., Tabanca N., Ali A., I. Khan Sh., A. Khan I., E. Wedge D., (2013), Synthesis and biological activity of substituted urea and thiourea derivatives containing 1, 2, 4-triazole moieties. Molecules. 18: 3562–3576.

[3] da Silva F., de C., V de Souza M. C. B. V., Frugulhetti I. I. P. P., Castro H. C., de O., Souza S. L., de Souza T. M. L., Rodrigues D. Q., Souza A. M. T., Abreu P. A., Passamani F., (2009), Synthesis, HIV-RT inhibitory activity and SAR of 1-benzyl-1H-1, 2, 3-triazole derivatives of carbohydrates. Eur. J. Med. Chem. 44: 373-383.

[4] El-Badawy A. A., S. Elgubbi A., El-Helw E. A. E., (2021), Acryloyl isothiocyanate skeleton as a precursor for synthesis of some novel pyrimidine, triazole, triazepine, thiadiazolopyrimidine and acylthiourea derivatives as antioxidant agents. J. Sulfur Chem. 42: 295-307.

[5] Pradeep Kumar C. B., Prathibha B. S., Prasad K. N. N., Raghu M. S., Prashanth M. K., Jayanna B. K.,  A. Alharthi F., Chandrasekhar S., Revanasiddappa H. D., Kumar K. Y., (2021), Click synthesis of 1, 2, 3-triazole based imidazoles: Antitubercular evaluation, molecular docking and HSA binding studies. Bioorg. Med. Chem. Lett. 36: 127810-127815.

[6] Zhang B., (2019), Comprehensive review on the anti-bacterial activity of 1, 2, 3-triazole hybrids. Eur. J. Med. Chem. 168: 357-372.

[7] Devender N., Gunjan S., Chhabra S., Kartikey S., Venkata Reddy P., Sh. Sanjeev K., Abhisheak Sh., Swati J., Sunil K. S., Yogesh K., Jawahar L., Arun K. T., Renu T., Rama Pati T., (2016), Identification of β-Amino alcohol grafted 1,4,5 trisubstituted 1, 2, 3-triazoles as potent antimalarial agents. Eur. J. Med. Chem. 109: 187-198.

[8] Bonandi E., Christodoulou M. Ch., Fumagalli G., Perdicchia D., Rastelli G., Passarella D., (2017), The 1, 2, 3-triazole ring as a bioisostere in medicinal chemistry. Drug. Discov. Today. 22:1572-1581.

[9] Karaca Gençer H., Acar Çevik U., Levent S., Saglık B. N., Korkut B., Özkay Y., Ilgın S., Öztürk Y., (2017),  New benzimidazole-1, 2, 4-triazole hybrid compounds: Synthesis, anticandidal activity and cytotoxicity evaluation. Molecules. 22: 507-529.

[10] Radwan A. A., Alanazi F. K., Al-Agamy M. H., (2017), 1, 3, 4-Thiadiazole and 1, 2, 4-triazole-3(4H)-thione bearing salicylate moiety: Synthesis and evaluation as anti-Candida albicans. Braz. J. Pharm. Sci. 53: e15239-e15245.

[11] Pitucha M., Janeczko M., Klimek K., Fornal E., Wos M., Pachuta-Stec A., Ginalskac G.,  A. Kaczoref A., (2020), 1, 2, 4-Triazolin-5-thione derivatives with anticancer activity as CK1γ kinase inhibitors.s Bioorg. Chem. 99: 103806-.103817.

[12] Aly A. A., Hassan A. A., Makhlouf M. M., Brase S., (2020), Chemistry and biological activities of 1, 2, 4-triazolethiones—antiviral and anti-infective drugs. Molecules. 25: 3036-3090.

[13] Khan Gh., Sreenivasa S., Govindaiah Sh., Chandramohan V., Shetty P R., (2020), Synthesis, biological screening, in silico study and fingerprint applications of novel 1, 2, 4-triazole derivatives. J. Heterocyclic Chem. 57: 2010-2023.

[14] Li X., Ye X., Wei Ch., Shan Ch., Wojtas L., Wang Q., Shi X., (2020),
Diazo activation with diazonium salts: Synthesis of indazole and 1, 2, 4-Triazole. Org. Lett. 22: 4151-4155.

[15] Gopal Nayak S., Poojary B., Russ J., (2020), Design, synthesis, in silico docking studies, and antibacterial activity of some thiadiazines and 1, 2, 4-triazole-3-thiones bearing pyrazole moiety. Bioorg. Chem. 46: 97-106.

[16] Chehrouri M., Othman A. A., Moreno-Cabrerizo C., holinejad M. G., Sansano J. M., (2020), Synthesis of 5-heptadecyl- and 5-heptadec-8-enyl substituted 4-amino-1, 2, 4-triazole-3-thiol and 1, 3, 4-oxadiazole-2-thione from (Z)-octadec-9-enoic acid: Preparation of Palladium(II) complexes and evaluation of their antimicrobial activity. Monatshefte fur Chemie. 151: 173-180.

[17] Hassan A. A., Mohamed N. K., Aly A. A., Tawfeek H. N., Bräse S., Nieger M., (2019), Eschenmoser-coupling reaction furnishes diazenyl-1, 2, 4-triazole-5(4H)-thione derivatives. Chem. Select.  4: 465–468.

[18] Luszczki J. J., Plech T., Wujec M., (2012), Effect of 4-(4-bromophenyl)-5-(3-chlorophenyl)-2, 4-dihydro-3H-1, 2, 4-triazole-3-thione on the anticonvulsant action of different classical antiepileptic drugs in the mouse maximal electroshock-induced seizure model. Eur. J. Pharmacol. 690: 99-106.

[19] Hanif M., Hassan M., Rafiq M., Abbas Q., Ishaq A., Shahzadi S., Seo S.–Y., Saleem M., (2018), Microwave-assisted synthesis, in vivo anti-inflammatory and in vitro anti-oxidant activities, and molecular docking study of new substituted schiff base derivatives. Pharm. Chem. J. 52: 424–437.

[20] Wang B. L., Liu X. H., Zhang X. L., Zhang J. F., Song H. B., Li Z. M., (2011), Synthesis, structure and biological activity of novel 1, 2, 4-triazole mannich bases containing a substituted benzylpiperazine moiety. Chem. Biol. Drug Des. 78: 42-49.

[21] Foks H., Czarnocka-janowicz A., Rudnicka W., Trzeciak H., (2000), Synthesis of new 5-substituted 1, 2, 4-triazole-3-thione derivatives. Phosph. Sulfur and Silicon. 164: 67-81.

[22] Mahajan P. G., Dige N. C., Vanjare B. D., Raza H., Hassan M., Seo S.-Y., Kim CH.-H., Lee, K. H. (2020), Synthesis and biological evaluation of 1, 2, 4-triazolidine-3-thiones as potent acetylcholinesterase inhibitors: In vitro and in silico analysis through kinetics, chemoinformatics and computational approaches. Molec. Diversity. 24: 1185-1203.

[23] Dincel E. D., Ulusoy‐Güzeldemirci N., Şatana D., Kuçukbasmaci, O., (2021), Design, synthesis, characterization and antimicrobial evaluation of some novel hydrazinecarbothioamide, 4‐thiazolidinone and 1, 2, 4‐triazole‐3‐thione derivatives. J. Heterocyclic Chem. 58: 195–205.

[24] El-Reedy A. A. M., Soliman N. K., (2020), Synthesis, biological activity and molecular modeling study of novel 1, 2, 4-triazolo [4, 3-b][1, 2, 4, 5] tetrazines and 1, 2, 4-triazolo[4, 3-b][1, 2, 4] triazines. Sci. Rep. 10: 6137-6141.

[25] Moavi J.,  Buazar F., Sayahi M. H., (2021), Algal magnetic nickel oxide nanocatalyst in accelerated synthesis of pyridopyrimidine derivatives. Sci. Rep. 11: 6296-6301.

[26] Maleki A., Hajizadeh Z., Valadi K., (2020), Green and eco-friendly mica/Fe3O4 as an efficient nanocatalyst for the multicomponent synthesis of 2-amino-4H-chromene derivatives. Green Chem. Lett. Rev. 14: 62-72.

[27] Babaei B., Mamaghani M., Mokhtary M., (2019), Sustainable approach to the synthesis of 1, 4-disubstitued triazoles using reusable Cu(II) complex supported on hydroxyapatite-encapsulated α-Fe2O3 as organic–inorganic hybrid nanocatalyst. React. Kinet. Mech. Catal. 128: 379–394.

[28] Taheri Kal-Kashvandi A., Heravi M. M., Ahmadi Sh., Hosseinnejad T., (2018), Copper nanoparticles in polyvinyl alcohol–acrylic acid matrix: an efficient heterogeneous catalyst for the regioselective synthesis of 1, 4-disubstituted 1, 2, 3-triazoles via click reaction. J. Inorg. Organomet. Polym. 30: 1457–1467.

[29] Sengar M., Saxena S., Satsangee S., Jain R., (2021), Silver nanoparticles decorated functionalized multiwalled carbon nanotubes modified screen printed sensor for the voltammetric determination of butorphanol. J. Applied Organomet. Chem. 1: 95-108.

[30] Mohammadi R., Sabourmoghaddam N., (2020), TiO2-graphene/chitosan nanocomposite: Preparation and its application for removal of anionic dyes. Asian J. Green Chem. 4: 11-32.
[31] Ezzatzadeh E., (2021), Chemoselective oxidation of sulfides to sulfoxides using a novel Zn-DABCO functionalized Fe3O4 MNPs as highly effective nanomagnetic catalyst. Asian J. Nanosci. Mater. 4: 125-136.

[32] Keyhani A., Nikpassand M., Zare Fekri L., Kefayati H., (2021), Green synthesis of novel Azo-linked 2-aryl-quinazolinones using Fe3O4@SP@TA nanoparticle. J. Clust. Sci. 34: 11-18.

[33] Aghazadeh B., Nikpassand M., (2019), 2-Amino glucose” as a substrate for synthesis of magnetically recoverable nanocatalyst NiFe2O4@SiO2@amino glucose for the green synthesis of novel bis (1, 2-dihydro-4-hydroxy-2-oxoquinolin-3-yl) methanes. Carbohydr. Res. 483: 107755-107761.

[34] Nikpassand M., Zare Fekri L., Karimian L., Rassa M., (2015), Synthesis of biscoumarin derivatives using nanoparticle Fe3O4 as an efficient reusable heterogeneous catalyst in aqueous media and their antimicrobial activity. Curr. Org. Chem. 12: 358-362.

[35] Masoumi Shahi A., Nikpassand M., Zare Fekri L., (2019), An efficient and green synthesis of new benzo[f] chromenes using 1, 4-disulfo-1, 4-diazoniabicyclo[2. 2. 2]octane chloride as a novel medium. Org. Prep. Proced. Int. 51: 521-529.

[36] Nikpassand M., (2020), NiFe2O4@SiO2@glucose amine nanoparticle catalyzed reaction of azo-linked thiosalicylic acid with CO2: Access to azo-linked benzo [d] oxathiine-2, 4-diones. Dyes Pigm. 173: 107936-107942.

[37] Ziksari M., Pourahmad A., (2016), Green synthesis of CuO/RHA-MCM-41 nanocomposite by solid state reaction: Characterization and antibacterial activity. Indian J. Chem. 55A: 1347-1351.

[38] Nikpassand M., Zare Fekri L., Pourahmad A., (2018), One-pot Synthesis of new azo-linked 4H-benzo [d] [1, 3] oxazine-2, 4-diones from carbon dioxide using CuO@RHA/MCM-41 nanocomposite in green media. J. CO2 Util. 27: 320-325. 

留言 (0)

沒有登入
gif