1.
Wethmar, K, Barbosa-Silva, A, Andrade-Navarro, MA, Leutz, A. uORFdb: a comprehensive literature database on eukaryotic uORF biology. Nucleic Acids Res. 2014;42:D60-67.
Google Scholar |
Crossref |
Medline2.
Ma, J, Ward, CC, Jungreis, I, et al. Discovery of human sORF-encoded polypeptides (SEPs) in cell lines and tissue. J Proteome Res. 2014;13:1757-1765.
Google Scholar |
Crossref |
Medline3.
Slavoff, SA, Mitchell, AJ, Schwaid, AG, et al. Peptidomic discovery of short open reading frame-encoded peptides in human cells. Nat Chem Biol. 2013;9:59-64.
Google Scholar |
Crossref |
Medline |
ISI4.
Frith, MC, Forrest, AR, Nourbakhsh, E, et al. The abundance of short proteins in the mammalian proteome. PLoS Genet. 2006;2:e52.
Google Scholar |
Crossref |
Medline |
ISI5.
Kundu, S. Mathematical model of a short translatable G-quadruplex and an assessment of its relevance to misfolding-induced proteostasis. Math Biosci Eng. 2020;17:2470-2493.
Google Scholar |
Crossref |
Medline6.
Agarwala, P, Pandey, S, Maiti, S. The tale of RNA G-quadruplex. Org Biomol Chem. 2015;13:5570-5585.
Google Scholar |
Crossref |
Medline7.
Millevoi, S, Moine, H, Vagner, S. G-quadruplexes in RNA biology. Wiley Interdiscip Rev RNA. 2012;3:495-507.
Google Scholar |
Crossref |
Medline8.
Hoogsteen, K. The crystal and molecular structure of a hydrogen-bonded complex between 1-methylthymine and 9-methyladenine. Acta Crystallographica. 1963;16:907-916.
Google Scholar |
Crossref9.
Garant, JM, Luce, MJ, Scott, MS, et al. G4RNA: an RNA G-quadruplex database. Database (Oxford). 2015;2015:bav059.
Google Scholar |
Crossref |
Medline10.
Garofalo, R, Wohlgemuth, I, Pearson, M, et al. Broad range of missense error frequencies in cellular proteins. Nucleic Acids Res. 2019;47:2932-2945. doi:
10.1093/nar/gky1319. Google Scholar |
Crossref |
Medline11.
Ou, X, Cao, J, Cheng, A, et al. Errors in translational decoding: tRNA wobbling or misincorporation? PLoS Genet. 2019;15:e1008017.
Google Scholar |
Crossref |
Medline12.
Hutchinson, S, Furger, A, Halliday, D, et al. Allelic variation in normal human FBN1 expression in a family with Marfan syndrome: a potential modifier of phenotype? Hum Mol Genet. 2003;12:2269-2276.
Google Scholar |
Crossref |
Medline13.
Davey, NE, Trave, G, Gibson, TJ. How viruses hijack cell regulation. Trends Biochem Sci. 2011;36:159-169.
Google Scholar |
Crossref |
Medline14.
Jucker, M, Walker, LC. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature. 2013;501:45-51.
Google Scholar |
Crossref |
Medline |
ISI15.
Piovesan, D, Tabaro, F, Micetic, I, et al. DisProt 7.0: a major update of the database of disordered proteins. Nucleic Acids Res. 2017;45:D219-D227.
Google Scholar |
Crossref |
Medline16.
Valikangas, T, Suomi, T, Elo, LL. A comprehensive evaluation of popular proteomics software workflows for label-free proteome quantification and imputation. Brief Bioinform. 2018;19:1344-1355.
Google Scholar |
Medline17.
Schmidt, A, Forne, I, Imhof, A. Bioinformatic analysis of proteomics data. BMC Syst Biol. 2014;8(Suppl. 2):S3.
Google Scholar |
Crossref |
Medline18.
Efstathiou, G, Antonakis, AN, Pavlopoulos, GA, et al. ProteoSign: an end-user online differential proteomics statistical analysis platform. Nucleic Acids Res. 2017;45:W300-W306. doi:
10.1093/nar/gkx444. Google Scholar |
Crossref |
Medline19.
Tyanova, S, Temu, T, Sinitcyn, P, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13:731-740.
Google Scholar |
Crossref |
Medline20.
Rainer, J, Sanchez-Cabo, F, Stocker, G, et al. CARMAweb: comprehensive R- and bioconductor-based web service for microarray data analysis. Nucleic Acids Res. 2006;34:W498-W503.
Google Scholar |
Crossref |
Medline |
ISI21.
Colaert, N, Helsens, K, Impens, F, Vandekerckhove, J, Gevaert, K. Rover: a tool to visualize and validate quantitative proteomics data from different sources. Proteomics. 2010;10:1226-1229.
Google Scholar |
Crossref |
Medline22.
van der Lee, R, Buljan, M, Lang, B, et al. Classification of intrinsically disordered regions and proteins. Chem Rev. 2014;114:6589-6631.
Google Scholar |
Crossref |
Medline |
ISI23.
Cantarel, BL, Coutinho, PM, Rancurel, C, Bernard, T, Lombard, V, Henrissat, B. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009;37:D233-D238.
Google Scholar |
Crossref |
Medline24.
Martinez, S, Hausinger, RP. Catalytic mechanisms of Fe(II)- and 2-oxoglutarate-dependent oxygenases. J Biol Chem. 2015;290:20702-20711.
Google Scholar |
Crossref |
Medline25.
Islam, MS, Leissing, TM, Chowdhury, R, et al. 2-oxoglutarate-dependent oxygenases. Annu Rev Biochem. 2018;87:585-620.
Google Scholar |
Crossref |
Medline26.
Kundu, S. Distribution and prediction of catalytic domains in 2-oxoglutarate dependent dioxygenases. BMC Res Notes. 2012;5:410.
Google Scholar |
Crossref |
Medline27.
UniProt . UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49:D480-D489.
Google Scholar |
Crossref |
Medline28.
Kundu, S. Insights into the mechanism(s) of digestion of crystalline cellulose by plant class C GH9 endoglucanases. J Mol Model. 2019;25:240.
Google Scholar |
Crossref |
Medline29.
Kundu, S. Fe(2)OG: an integrated HMM profile-based web server to predict and analyze putative non-haem iron(II)- and 2-oxoglutarate-dependent dioxygenase function in protein sequences. BMC Res Notes. 2021;14:80.
Google Scholar |
Crossref |
Medline30.
Chang, YF, Imam, JS, Wilkinson, MF. The nonsense-mediated decay RNA surveillance pathway. Annu Rev Biochem. 2007;76:51-74.
Google Scholar |
Crossref |
Medline |
ISI
Comments (0)