Almolda, B., Gonzalez, B., Castellano, B. (2013). Microglia detection by enzymatic histochemistry. Methods in Molecular Biology, 1041, 243–259.
https://doi.org/10.1007/978-1-62703-520-0_22 Google Scholar |
Crossref |
Medline Antonioli, L., Pacher, P., Vizi, E. S., & Haskó, G. (2013). CD39 and CD73 in immunity and inflammation. Trends in Molecular Medicine, 19, 355–367.
https://doi.org/10.1016/j.molmed.2013.03.005 Google Scholar |
Crossref |
Medline |
ISI Au, N. P. B., Ma, C. H. E. (2017). Recent advances in the study of bipolar/rod-shaped microglia and their roles in neurodegeneration. Frontiers in Aging Neuroscience, 9, 128.
https://doi.org/10.3389/fnagi.2017.00128 Google Scholar |
Crossref |
Medline Bernier, L. P., Ase, A. R., Boue-Grabot, E., & Séguéla, P. (2013). Inhibition of P2X4 function by P2Y6 UDP receptors in microglia. Glia, 61, 2038–2049.
https://doi.org/10.1002/glia.22574 Google Scholar |
Crossref |
Medline |
ISI Boche, D., Perry, V. H., Nicoll, J. A. (2013). Review: Activation patterns of microglia and their identification in the human brain. Neuropathology and Applied Neurobiology, 39, 3–18.
https://doi.org/10.1111/nan.12011 Google Scholar |
Crossref |
Medline |
ISI Borroto-Escuela, D. O., Hinz, S., Navarro, G., Rafael Franco, R., Müller, C.E., & Fuxe, K. (2018). Understanding the role of adenosine A2AR heteroreceptor complexes in neurodegeneration and neuroinflammation. Frontiers in Neuroscience, 12, 43.
https://doi.org/10.3389/fnins.2018.00043 Google Scholar |
Crossref |
Medline Braun, N., Sevigny, J., Robson, S. C., Enjyoji, K., Guckelberger, O., Hammer, K., Di Virgilio, F., & Zimmermann, H. (2000). Assignment of ecto-nucleoside triphosphate diphosphohydrolase-1/cd39 expression to microglia and vasculature of the brain. European Journal of Neuroscience, 12, 4357–4366.
Google Scholar |
Crossref |
Medline |
ISI Burnstock, G. (2017). Purinergic signalling: Therapeutic developments. Frontiers in Pharmacology, 8, 661.
https://doi.org/10.3389/fphar.2017.00661 Google Scholar |
Crossref |
Medline Campagno, K. E., Mitchell, C. H. (2021). The P2X7 receptor in microglial cells modulates the endolysosomal axis, autophagy, and phagocytosis. Frontiers in Cellular Neuroscience, 15, 645244.
https://doi.org/10.3389/fncel.2021.645244 Google Scholar |
Crossref |
Medline Chvojkova, M., Kubova, H., Vales, K. (2021). Effects of dizocilpine, midazolam and their co-application on the trimethyltin (TMT)-induced rat model of cognitive deficit. Brain Sciences, 11.
https://doi.org/10.3390/brainsci11030400 Google Scholar |
Crossref |
Medline Corvino, V., Di Maria, V., Marchese, E., Lattanzi, W., Biamonte, F., Michetti, F., & Geloso, M. C. (2015). Estrogen administration modulates hippocampal GABAergic subpopulations in the hippocampus of trimethyltin-treated rats. Frontiers in Cellular Neuroscience, 9, 433.
https://doi.org/10.3389/fncel.2015.00433 Google Scholar |
Crossref |
Medline Corvino, V., Marchese, E., Michetti, F., & Geloso, M. C. (2013). Neuroprotective strategies in hippocampal neurodegeneration induced by the neurotoxicant trimethyltin. Neurochemical Research, 38, 240–253.
https://doi.org/10.1007/s11064-012-0932-9 Google Scholar |
Crossref |
Medline |
ISI Costenla, A. R., Cunha, R. A., de Mendonca, A. (2010). Caffeine, adenosine receptors, and synaptic plasticity. Journal of Alzheimer's Disease, 20(Suppl 1), S25–S34.
https://doi.org/10.3233/JAD-2010-091384 Google Scholar |
Crossref |
Medline Delekate, A., Fuchtemeier, M., Schumacher, T., Ulbrich, C., Foddis, M., & Petzold, G.C. (2014). Metabotropic P2Y1 receptor signalling mediates astrocytic hyperactivity in vivo in an Alzheimer's Disease mouse model. Nature Communications, 5, 5422.
https://doi.org/10.1038/ncomms6422 Google Scholar |
Crossref |
Medline |
ISI Di Virgilio, F., Ceruti, S., Bramanti, P., & Abbracchio, M.P (2009). Purinergic signalling in inflammation of the central nervous system. Trends in Neurosciences, 32, 79–87.
https://doi.org/10.1016/j.tins.2008.11.003 Google Scholar |
Crossref |
Medline Di Virgilio, F., Dal Ben, D., Sarti, A. C., Giuliani, A.L., & Falzoni, S. (2017). The P2X7 receptor in infection and inflammation. Immunity, 47, 15–31.
https://doi.org/10.1016/j.immuni.2017.06.020 Google Scholar |
Crossref |
Medline Dragic, M., Milicevic, K., Adzic, M., Stevanović, I., Ninković, M., Grković, I., Pavle Andjus, P., & Nedeljković, N. (2021). Trimethyltin increases intracellular Ca(2+) Via L-type voltage-gated calcium channels and promotes inflammatory phenotype in rat astrocytes in vitro. Molecular Neurobiology. 58(4):1792-1805
https://doi.org/10.1007/s12035-020-02273-x Google Scholar |
Medline Dragic, M., Zaric, M., Mitrovic, N., Nedeljković, N., & Grković, I. (2019a). Application of gray level Co-occurrence matrix analysis as a new method for enzyme histochemistry quantification. Microscopy and Microanalysis, 25, 690–698.
https://doi.org/10.1017/S1431927618016306 Google Scholar |
Crossref |
Medline Dragic, M., Zaric, M., Mitrovic, N., Nedeljković. N., & Grković, I. (2019b). Two distinct hippocampal astrocyte morphotypes reveal subfield-different fate during neurodegeneration induced by trimethyltin intoxication. Neuroscience, 423, 38–54.
https://doi.org/10.1016/j.neuroscience.2019.10.022 Google Scholar |
Crossref |
Medline Dunn, K. W., Kamocka, M. M., McDonald, J. H. (2011). A practical guide to evaluating colocalization in biological microscopy. American Journal of Physiology-Cell Physiology, 300, C723–C742.
https://doi.org/10.1152/ajpcell.00462.2010 Google Scholar |
Crossref |
Medline |
ISI Erb, L., Woods, L. T., Khalafalla, M. G., & Weisman, G. A. (2019). Purinergic signaling in Alzheimer's disease. Brain Research Bulletin, 151, 25–37.
https://doi.org/10.1016/j.brainresbull.2018.10.014 Google Scholar |
Crossref |
Medline Escartin, C., Galea, E., Lakatos, A., O'Callaghan, J. P., Petzold, G. C., Serrano-Pozo, A., Steinhäuser, C., Volterra, A., Carmignoto, G., Agarwal, A., Allen, N. J., Araque, A., Barbeito, L., Barzilai A., Bergles D. E., Bonvento G., Butt A. M., Chen W. T., Cohen-Salmon M., . . . Verkhratsky A. (2021). Reactive astrocyte nomenclature, definitions, and future directions. Nature Neuroscience, 24, 312–325.
https://doi.org/10.1038/s41593-020-00783-4 Google Scholar |
Crossref |
Medline Ferraz da Silva, I., Freitas-Lima, L. C., Graceli, J. B., & Rodrigues, L. C. M. (2017). Organotins in neuronal damage, brain function, and behavior: A short review. Frontiers in Endocrinology (Lausanne), 8, 366.
https://doi.org/10.3389/fendo.2017.00366 Google Scholar |
Crossref |
Medline Franke, H., Verkhratsky, A., Burnstock, G., & Illes, P. (2012). Pathophysiology of astroglial purinergic signalling. Purinergic Signalling, 8, 629–657.
https://doi.org/10.1007/s11302-012-9300-0 Google Scholar |
Crossref |
Medline |
ISI Geloso, M. C., Corvino, V., Michetti, F. (2011). Trimethyltin-induced hippocampal degeneration as a tool to investigate neurodegenerative processes. Neurochemistry International, 58, 729–738.
https://doi.org/10.1016/j.neuint.2011.03.009 Google Scholar |
Crossref |
Medline |
ISI Glass, M., Faull, R. L., Bullock, J. Y., Jansen, K., Mee, E. W., Walker, E. B., Synek, B. J., & Dragunow, M. (1996). Loss of A1 adenosine receptors in human temporal lobe epilepsy. Brain Research, 710, 56–68.
https://doi.org/10.1016/0006-8993(95)01313-X Google Scholar |
Crossref |
Medline |
ISI Grkovic, I., Drakulic, D., Martinovic, J., & Mitrovic, N. (2019a). Role of ectonucleotidases in synapse formation during brain development: Physiological and pathological implications. Current Neuropharmacology, 17, 84–98.
https://doi.org/10.2174/1570159X15666170518151541 Google Scholar |
Crossref |
Medline Grkovic, I., Mitrovic, N., Dragic, M., Adžić, M., Drakulić, D., & Nedeljković, N. (2019b). Spatial distribution and expression of ectonucleotidases in Rat hippocampus after removal of ovaries and estradiol replacement. Molecular Neurobiology, 56, 1933–1945.
https://doi.org/10.1007/s12035-018-1217-3 Google Scholar |
Crossref |
Medline Haga, S., Haga, C., Aizawa, T., & Ikeda, K. (2002). Neuronal degeneration and glial cell-responses following trimethyltin intoxication in the rat. Acta Neuropathologica, 103, 575–582.
https://doi.org/10.1007/s00401-001-0505-5 Google Scholar |
Crossref |
Medline Hasko, G., Cronstein, B. (2013). Regulation of inflammation by adenosine. Frontiers in Immunology, 4, 85.
https://doi.org/10.3389/fimmu.2013.00085 Google Scholar |
Crossref |
Medline Haynes, S. E., Hollopeter, G., Yang, G., Kurpius, D., Dailey, M. E., Gan, W. B., & Julius, D. (2006). The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nature Neuroscience, 9, 1512–1519.
https://doi.org/10.1038/nn1805 Google Scholar |
Crossref |
Medline |
ISI Hou, X., Li, Y., Huang, Y., Zhao, H., & Gui, L. (2020). Adenosine receptor A1–A2a heteromers regulate EAAT2 expression and glutamate uptake via YY1-induced repression of PPARgamma transcription. PPAR Research, 2020, 2410264.
https://doi.org/10.1155/2020/2410264 Google Scholar |
Crossref |
Medline Hu, Q., Ren, X., Liu, Y., Li, Z., Zhang, L., Chen, X., He, C., & Chen, J. F. (2016). Aberrant adenosine A2A receptor signaling contributes to neurodegeneration and cognitive impairments in a mouse model of synucleinopathy. Experimental Neurology, 283, 213–223.
https://doi.org/10.1016/j.expneurol.2016.05.040 Google Scholar |
Crossref |
Medline Illes, P., Rubini, P., Ulrich, H., Zhao, Y., & Tang, Y. (2020). Regulation of microglial functions by purinergic mechanisms in the healthy and diseased CNS. Cells, 9:1108.
https://doi.org/10.3390/cells9051108 Google Scholar |
Crossref |
Medline Jakovljevic, M., Lavrnja, I., Bozic, I., Milosevic, A., Bjelobaba, I., Savic, D., Sévigny, J., Pekovic, S., Nedeljkovic, N., & Laketa, D. (2019). Induction of NTPDase1/CD39 by reactive microglia and macrophages is associated with the functional state during EAE. Frontiers in Neuroscience, 13, 410.
https://doi.org/10.3389/fnins.2019.00410 Google Scholar |
Crossref |
Medline Koizumi, S., Shigemoto-Mogami, Y., Nasu-Tada, K., Shinozaki, Y., Ohsawa, K., Tsuda, M., Joshi, B. V., Jacobson, K. A., Kohsaka, S., & Inoue, K. (2007). UDP Acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature, 446, 1091–1095.
https://doi.org/10.1038/nature05704 Google Scholar |
Crossref |
Medline Kotake, Y. (2012). Molecular mechanisms of environmental organotin toxicity in mammals. Biological & Pharmaceutical Bulletin, 35, 1876–1880.
https://doi.org/10.1248/bpb.b212017 Google Scholar |
Crossref |
Medline Kuboyama, K., Harada, H., Tozaki-Saitoh, H., Tsuda, M., Ushijima, K., & Inoue, K. (2011). Astrocytic P2Y(1) receptor is involved in the regulation of cytokine/chemokine transcription and cerebral damage in a rat model of cerebral ischemia. Journal of Cerebral Blood Flow & Metabolism, 31, 1930–1941.
https://doi.org/10.1038/jcbfm.2011.49 Google Scholar |
SAGE Journals |
ISI Latini, L., Geloso, M. C., Corvino, V., Giannetti, S., Florenzano, F., Viscomi, M. T., Michetti, F., & Molinari, M. (2010). Trimethyltin intoxication up-regulates nitric oxide synthase in neurons and purinergic ionotropic receptor 2 in astrocytes in the hippocampus. Journal of Neuroscience Research, 88, 500–509.
Google Scholar |
Medline Lattanzi, W., Corvino, V., Di Maria, V., Michetti, F., & Geloso, M. C. (2013). Gene expression profiling as a tool to investigate the molecular machinery activated during hippocampal neurodegeneration induced by trimethyltin (TMT) administration. International Journal of Molecular Sciences, 14, 16817–16835.
https://doi.org/10.3390/ijms140816817 Google Scholar |
Crossref |
Medline Lee, S., Yang, M., Kim, J., Kang, S., Kim, J., Kim, J. C., Jung, C., Shin, T., Kim, S. H., & Moon, C. (2016). Trimethyltin-induced hippocampal neurodegeneration: A mechanism-based review. Brain Research Bulletin, 125, 187–199.
https://doi.org/10.1016/j.brainresbull.2016.07.010 Google Scholar |
Crossref |
Medline Liddelow, S. A., Barres, B. A. (2017). Reactive astrocytes: Production, function, and therapeutic potential. Immunity, 46, 957–967.
https://doi.org/10.1016/j.immuni.2017.06.006 Google Scholar |
Crossref |
Medline Little, A. R., Benkovic, S. A., Miller, D. B., & O'Callaghan, J. P. (2002). Chemically induced neuronal damage and gliosis: Enhanced expression of the proinflammatory chemokine, monocyte chemoattractant protein (MCP)-1, without a corresponding increase in proinflammatory cytokines(1). Neuroscience, 115, 307–320.
https://doi.org/10.1016/S0306-4522(02)00359-7 Google Scholar |
Crossref |
Medline |
ISI Little, A. R., Miller, D. B., Li, S., Kashon, M. L., & O'Cal
Comments (0)