1. Clark, DJ, Ting, LH, Zajac, FE, Neptune, RR, Kautz, SA. Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. J Neurophysiol. 2010;103(2):844-857. doi:
10.1152/jn.00825.2009.
Google Scholar |
Crossref |
Medline2. Allen, JL, Kesar, TM, Ting, LH. Motor module generalization across balance and walking is impaired after stroke. J Neurophysiol. 2019;122:277-289. doi:
10.1152/jn.00561.2018. Published online.
Google Scholar |
Crossref |
Medline3. van de Port, I, Kwakkel, G, Lindeman, E. Community ambulation in patients with chronic stroke: how is it related to gait speed? J Rehabil Med. 2008;40(1):23-27. doi:
10.2340/16501977-0114.
Google Scholar |
Crossref |
Medline |
ISI4. Kesar, TM, Stinear, JW, Wolf, SL. The use of transcranial magnetic stimulation to evaluate cortical excitability of lower limb musculature: challenges and opportunities. Restor Neurol Neurosci. 2018;36:333-348. doi:
10.3233/RNN-170801.
Google Scholar |
Crossref |
Medline5. Hsiao, H, Awad, LN, Palmer, JA, Higginson, JS, Binder-Macleod, SA. Contribution of paretic and nonparetic limb peak propulsive forces to changes in walking speed in individuals poststroke. Neurorehabilitation Neural Repair. 2016;30(8):743-752. doi:
10.1177/1545968315624780.
Google Scholar |
SAGE Journals |
ISI6. Bowden, MG, Balasubramanian, CK, Behrman, AL, Kautz, SA. Validation of a speed-based classification system using quantitative measures of walking performance poststroke. Neurorehabilitation Neural Repair. 2008;22(6):672-675. doi:
10.1177/1545968308318837.
Google Scholar |
SAGE Journals |
ISI7. Palmer, JA, Hsiao, H, Awad, LN, Binder-Macleod, SA. Symmetry of corticomotor input to plantarflexors influences the propulsive strategy used to increase walking speed post-stroke. Clin Neurophysiol. 2016;127(3):1837-1844. doi:
10.1016/j.clinph.2015.12.003.
Google Scholar |
Crossref |
Medline8. Palmer, JA, Hsiao, H, Wright, T, Binder-Macleod, SA. Single session of functional electrical stimulation-assisted walking produces corticomotor symmetry changes related to changes in poststroke walking mechanics. Phys Ther. 2017;97(5):550-560. doi:
10.1093/ptj/pzx008.
Google Scholar |
Crossref |
Medline9. Irlbacher, K, Brocke, J, Mechow, Jv., Brandt, SA. Effects of GABAA and GABAB agonists on interhemispheric inhibition in man. Clin Neurophysiol. 2007;118(2):308-316. doi:
10.1016/j.clinph.2006.09.023.
Google Scholar |
Crossref |
Medline10. Hall, SD, Stanford, IM, Yamawaki, N, et al. The role of GABAergic modulation in motor function related neuronal network activity. Neuroimage. 2011;56(3):1506-1510. doi:
10.1016/j.neuroimage.2011.02.025.
Google Scholar |
Crossref |
Medline11. Rossiter, HE, Boudrias, M-H, Ward, NS. Do movement-related beta oscillations change after stroke? J Neurophysiol. 2014;112:2053-2058. doi:
10.1152/jn.00345.2014.
Google Scholar |
Crossref |
Medline12. Engel, AK, Fries, P. Beta-band oscillations-signalling the status quo? Curr Opin Neurobiol. 2010;20(2):156-165. doi:
10.1016/j.conb.2010.02.015.
Google Scholar |
Crossref |
Medline13. Tremblay, S, Rogasch, NC, Premoli, I, et al. Clinical utility and prospective of TMS–EEG. Clin Neurophysiol. 2019;130(5):802-844. doi:
10.1016/j.clinph.2019.01.001.
Google Scholar |
Crossref |
Medline14. Smith, M-C, Stinear, JW, Alan Barber, P, Stinear, CM. Effects of non-target leg activation, TMS coil orientation, and limb dominance on lower limb motor cortex excitability. Brain Res. 2017;1655:10-16. doi:
10.1016/j.brainres.2016.11.004.
Google Scholar |
Crossref |
Medline |
ISI15. Komssi, S, Kähkönen, S, Ilmoniemi, RJ. The effect of stimulus intensity on brain responses evoked by transcranial magnetic stimulation. Hum Brain Mapp. 2004;21(3):154-164. doi:
10.1002/hbm.10159.
Google Scholar |
Crossref |
Medline |
ISI16. Fjell, AM, Walhovd, KB. Structural brain changes in aging: courses, causes and cognitive consequences. Rev Neurosci. 2010;21(3):187-221. doi:
10.1515/revneuro.2010.21.3.187.
Google Scholar |
Crossref |
Medline |
ISI17. Sivaramakrishnan, A, Madhavan, S. Absence of a transcranial magnetic stimulation-induced lower limb corticomotor response does not affect walking speed in chronic stroke survivors. Stroke. 2018;49(8):2004-2007. doi:
10.1161/STROKEAHA.118.021718.
Google Scholar |
Crossref |
Medline18. Gray, WA, Palmer, JA, Wolf, SL, Borich, MR. Abnormal EEG responses to TMS during the cortical silent period are associated with hand function in chronic stroke. Neurorehabilitation Neural Repair. 2017;31(7):666-676. doi:
10.1177/1545968317712470.
Google Scholar |
SAGE Journals |
ISI19. Palmer, JA, Wheaton, LA, Gray, WA, Saltão da Silva, MA, Wolf, SL, Borich, MR. Role of interhemispheric cortical interactions in poststroke motor function. Neurorehabilitation Neural Repair. 2019;33:762-774. doi:
10.1177/1545968319862552. Published online.
Google Scholar |
SAGE Journals |
ISI20. Zhang, C, Wang, X, Wang, Y, et al. Risk factors for post-stroke seizures: a systematic review and meta-analysis. Epilepsy Res. 2014;108(10):1806-1816. doi:
10.1016/j.eplepsyres.2014.09.030.
Google Scholar |
Crossref |
Medline21. Rossini, PM, Burke, D, Chen, R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application: an updated report from an I.F.C.N. Committee. Clin Neurophysiol. 2015;126(6):1071-1107. doi:
10.1016/j.clinph.2015.02.001.
Google Scholar |
Crossref |
Medline |
ISI22. Awad, LN, Reisman, DS, Kesar, TM, Binder-Macleod, SA. Targeting paretic propulsion to improve poststroke walking function: a preliminary study. Arch Phys Med Rehabil. 2014;95(5):840-848. doi:
10.1016/j.apmr.2013.12.012.Targeting.
Google Scholar |
Crossref |
Medline23. Palmer, JA, Zarzycki, R, Morton, SM, Kesar, TM, Binder-Macleod, SA. Characterizing differential poststroke corticomotor drive to the dorsi-and plantarflexor muscles during resting and volitional muscle activation. J Neurophysiol. 2017;117(4):1615-1624. doi:
10.1152/jn.00393.2016.
Google Scholar |
Crossref |
Medline24. Palmer, JA, Needle, AR, Pohlig, RT, Binder-Macleod, SA. Atypical cortical drive during activation of the paretic and nonparetic tibialis anterior is related to gait deficits in chronic stroke. Clin Neurophysiol. 2016;127:716-723.
Google Scholar |
Crossref |
Medline25. Groppa, S, Oliviero, A, Eisen, A, et al. A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol. 2012;123:858-882. doi:
10.1016/j.clinph.2012.01.010.
Google Scholar |
Crossref |
Medline |
ISI26. Borich, MR, Neva, JL, Boyd, LA. Evaluation of differences in brain neurophysiology and morphometry associated with hand function in individuals with chronic stroke. Restor Neurol Neurosci. 2015;33(1):31-42. doi:
10.3233/RNN-140425.
Google Scholar |
Crossref |
Medline27. van Melick, N, Meddeler, BM, Hoogeboom, TJ, Nijhuis-van der Sanden, MWG, van Cingel, REH. How to determine leg dominance: the agreement between self-reported and observed performance in healthy adults. PloS One. 2017;12(12):e0189876. doi:
10.1371/journal.pone.0189876.
Google Scholar |
Crossref |
Medline28. Mang, CS, Borich, MR, Brodie, SM, et al. Diffusion imaging and transcranial magnetic stimulation assessment of transcallosal pathways in chronic stroke. Clin Neurophysiol. 2015;126(10):1959-1971. doi:
10.1016/j.clinph.2014.12.018.
Google Scholar |
Crossref |
Medline29. Delorme, A, Makeig, S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134(1):9-21. doi:
10.1016/j.jneumeth.2003.10.009.
Google Scholar |
Crossref |
Medline |
ISI30. Nolte, G, Bai, O, Wheaton, L, Mari, Z, Vorbach, S, Hallett, M. Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol. 2004;115:2292-2307. doi:
10.1016/j.clinph.2004.04.029.
Google Scholar |
Crossref |
Medline31. Bütefisch, CM, Wessling, M, Netz, J, Seitz, RJ, Hömberg, V. Relationship between interhemispheric inhibition and motor cortex excitability in subacute stroke patients. Neurorehabilitation Neural Repair. 2008;22(1):4-21. doi:
10.1177/1545968307301769.
Google Scholar |
SAGE Journals |
ISI32. Borich, MR, Wheaton, LA, Brodie, SM, Lakhani, B, Boyd, LA. Evaluating interhemispheric cortical responses to transcranial magnetic stimulation in chronic stroke: A TMS-EEG investigation. Neurosci Lett. 2016;618:25-30.
Google Scholar |
Crossref |
Medline33. Mille, M-L, Simoneau, M, Rogers, MW. Postural dependence of human locomotion during gait initiation. J Neurophysiol. 2014;112(12):3095-3103. doi:
10.1152/jn.00436.2014.
Google Scholar |
Crossref |
Medline34. Rossiter, HE, Davis, EM, Clark, EV, Boudrias, M-H, Ward, NS. Beta oscillations reflect changes in motor cortex inhibition in healthy ageing. Neuroimage. 2014;91:360-365. doi:
10.1016/j.neuroimage.2014.01.012.
Google Scholar |
Crossref |
Medline35. Swanson, CW, Fling, BW. Associations between gait coordination, variability and motor cortex inhibition in young and older adults. Exp Gerontol. 2018;113:163-172. doi:
10.1016/j.exger.2018.10.002.
Google Scholar |
Crossref |
Medline36. Stinear, CM, Barber, PA, Petoe, M, Anwar, S, Byblow, WD. The PREP algorithm predicts potential for upper limb recovery after stroke. Brain. 2012;135:2527-2535. doi:
10.1093/brain/aws146.
Google Scholar |
Crossref |
Medline |
ISI37. Cassidy, JM, Wodeyar, A, Wu, J, et al. Low-frequency oscillations are a biomarker of injury and recovery after stroke. Stroke. 2020;51:1442-1450. doi:
10.1161/STROKEAHA.120.028932.
Google Scholar |
Crossref |
Medline38. Van Den Berg, FE, Swinnen, SP, Wenderoth, N. Excitability of the motor cortex ipsilateral to the moving body side depends on spatio-temporal task complexity and hemispheric specialization. Plos One. 2020;6:1-13.
Google Scholar39. Verstynen, T, Albert, N, Aparicio, P, et al. Ipsilateral motor cortex activity during unimanual hand movements relates to task complexity. J Neurophysiol. 2020;93:1209-1222. doi:
10.1152/jn.00720.2004.
Google Scholar |
Crossref40. Conde, V, Tomasevic, L, Akopian, I, et al. The non-transcranial TMS-evoked potential is an inherent source of ambiguity in TMS-EEG studies. Neuroimage. 2019;185:300-312. doi:
10.1016/j.neuroimage.2018.10.052.
Google Scholar |
Crossref |
Medline
Comments (0)