The β3 Adrenergic Receptor Antagonist L-748,337 Attenuates Dobutamine-Induced Cardiac Inefficiency While Preserving Inotropy in Anesthetized Pigs

1. Ponikowski, P, Voors, AA, Anker, SD, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: The task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18(8):891–975.
Google Scholar | Crossref | Medline2. Suga, H . Ventricular energetics. Physiolo Rev. 1990;70(2):247–277.
Google Scholar | Crossref | Medline3. Sarnoff, SJ, Braunwald, E, Welch, GH, Case, RB, Stainsby, WN, Macruz, R. Hemodynamic determinants of oxygen consumption of the heart with special reference to the tension-time index. Am J Physiol. 1958;192(1):148–156.
Google Scholar | Crossref | Medline4. Ruf, T, Hebisch, S, Gross, R, Alpert, N, Just, H, Holubarsch, C. Modulation of myocardial economy and efficiency in mammalian failing and non-failing myocardium by calcium channel activation and beta-adrenergic stimulation. Cardiovasc Res. 1996;32(6):1047–1055.
Google Scholar | Crossref | Medline5. Muller, S, How, OJ, Jakobsen, O, et al. Oxygen-wasting effect of inotropy: is there a need for a new evaluation? An experimental large-animal study using dobutamine and levosimendan. Circ Heart Fail. 2010;3(2):277–285.
Google Scholar | Crossref | Medline6. Sundram, P, Reddy, HK, McElroy, PA, Janicki, JS, Weber, KT. Myocardial energetics and efficiency in patients with idiopathic cardiomyopathy: response to dobutamine and amrinone. Am Heart J. 1990;119(4):891–898.
Google Scholar | Crossref | Medline7. Hata, K, Goto, Y, Futaki, S, et al. Mechanoenergetic effects of pimobendan in canine left ventricles. Comparison with dobutamine. Circulation. 1992;86(4):1291–1301.
Google Scholar | Crossref | Medline8. Grandis, DJ, MacGowan, GA, Koretsky, AP. Comparison of the effects of ORG 30029, dobutamine and high perfusate calcium on function and metabolism in rat heart. J Mol Cell Cardiol. 1998;30(12):2605–2612.
Google Scholar | Crossref | Medline9. Yi, KD, Downey, HF, Bian, X, Fu, M, Mallet, RT. Dobutamine enhances both contractile function and energy reserves in hypoperfused canine right ventricle. Am J Physiol Heart Circ Physiol. 2000;279(6):H2975–H2985.
Google Scholar | Crossref | Medline10. Saupe, KW, Eberli, FR, Ingwall, JS, Apstein, CS. Metabolic support as an adjunct to inotropic support in the hypoperfused heart. J Mol Cell Cardiol. 2001;33(2):261–269.
Google Scholar | Crossref | Medline11. Nakajima-Takenaka, C, Sakata, S, Kato, S, et al. Detrimental effects after dobutamine infusion on rat left ventricular function: mechanical work and energetics. Exp Physiol. 2005;90(4):635–644.
Google Scholar | Crossref | Medline12. Rider, OJ, Francis, JM, Ali, MK, et al. Effects of catecholamine stress on diastolic function and myocardial energetics in obesity. Circulation. 2012;125(12):1511–1519.
Google Scholar | Crossref | Medline13. Mjos, OD . Effect of free fatty acids on myocardial function and oxygen consumption in intact dogs. J Clin Investig. 1971;50(7):1386–1389.
Google Scholar | Crossref | Medline14. How, OJ, Aasum, E, Kunnathu, S, Severson, DL, Myhre, ES, Larsen, TS. Influence of substrate supply on cardiac efficiency, as measured by pressure-volume analysis in ex vivo mouse hearts. Am J Physiol Heart Circ Physiol. 2005;288(6):H2979–H2985.
Google Scholar | Crossref | Medline15. Mjos, OD . Effect of inhibition of lipolysis on myocardial oxygen consumption in the presence of isoproterenol. J Clin Investig. 1971;50(9):1869–1873.
Google Scholar | Crossref | Medline16. Korvald, C, Elvenes, OP, Myrmel, T. Myocardial substrate metabolism influences left ventricular energetics in vivo. Am J Physiol Heart Circ Physiol. 2000;278(4):H1345–H1351.
Google Scholar | Crossref | Medline17. Reverte, M, Rivas-Cabanero, L. Effects of the beta 3-adrenoceptor agonist BRL 37344 on lipomobilization and plasma glucose levels in conscious fasted rabbits. Can J Physiol Pharmacol. 1996;74(3):251–256.
Google Scholar | Crossref | Medline18. Sasaki, N, Uchida, E, Niiyama, M, Yoshida, T, Saito, M. Anti-obesity effects of selective agonists to the beta 3-adrenergic receptor in dogs. I. The presence of canine beta 3-adrenergic receptor and in vivo lipomobilization by its agonists. J Vet Med Sci. 1998;60(4):459–463.
Google Scholar | Crossref | Medline19. Galitzky, J, Reverte, M, Carpene, C, Lafontan, M, Berlan, M. Beta 3-adrenoceptors in dog adipose tissue: studies on their involvement in the lipomobilizing effect of catecholamines. J Pharmacol Exp Ther. 1993;266(1):358–366.
Google Scholar | Medline20. Fisher, MH, Amend, AM, Bach, TJ, et al. A selective human beta3 adrenergic receptor agonist increases metabolic rate in rhesus monkeys. J Clin Investig. 1998;101(11):2387–2393.
Google Scholar | Crossref | Medline21. Napp, A, Brixius, K, Pott, C, et al. Effects of the beta3-adrenergic agonist BRL 37344 on endothelial nitric oxide synthase phosphorylation and force of contraction in human failing myocardium. J Card Fail. 2009;15(1):57–67.
Google Scholar | Crossref | Medline22. Gauthier, C, Tavernier, G, Charpentier, F, Langin, D, Le Marec, H. Functional beta3-adrenoceptor in the human heart. J Clin Investig. 1996;98(2):556–562.
Google Scholar | Crossref | Medline23. Morimoto, A, Hasegawa, H, Cheng, HJ, Little, WC, Cheng, CP. Endogenous beta3-adrenoreceptor activation contributes to left ventricular and cardiomyocyte dysfunction in heart failure. Am J Physiol Heart Circ Physiol. 2004;286(6):H2425–H2433.
Google Scholar | Crossref | Medline24. Moniotte, S, Balligand, JL. Potential use of beta(3)-adrenoceptor antagonists in heart failure therapy. Cardiovasc Drug Rev. 2002;20(1):19–26.
Google Scholar | Crossref | Medline25. Moniotte, S, Kobzik, L, Feron, O, Trochu, JN, Gauthier, C, Balligand, JL. Upregulation of beta(3)-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation. 2001;103(12):1649–1655.
Google Scholar | Crossref | Medline26. Zile, MR, Tanaka, R, Lindroth, JR, Spinale, F, Carabello, BA, Mirsky, I. Left ventricular volume determined echocardiographically by assuming a constant left ventricular epicardial long-axis/short-axis dimension ratio throughout the cardiac cycle. J Am Coll Cardiol. 1992;20(4):986–993.
Google Scholar | Crossref | Medline27. Helak, JW, Reichek, N. Quantitation of human left ventricular mass and volume by two-dimensional echocardiography: in vitro anatomic validation. Circulation. 1981;63(6):1398–1407.
Google Scholar | Crossref | Medline28. Domenech, RJ, Hoffman, JI, Noble, MI, Saunders, KB, Henson, JR, Subijanto, S. Total and regional coronary blood flow measured by radioactive microspheres in conscious and anesthetized dogs. Cir Res. 1969;25(5):581–596.
Google Scholar | Crossref | Medline29. Suga, H . Total mechanical energy of a ventricle model and cardiac oxygen consumption. Am J Physiol. 1979;236(3):H498–H505.
Google Scholar | Medline | ISI30. Futaki, S, Nozawa, T, Yasumura, Y, Tanaka, N, Suga, H. A new cardiotonic agent, OPC-8212, elevates the myocardial oxygen consumption versus pressure-volume area (PVA) relation in a similar manner to catecholamines and calcium in canine hearts. Heart Vessels. 1988;4(3):153–161.
Google Scholar | Crossref | Medline31. How, OJ, Aasum, E, Larsen, TS. Work-independent assessment of efficiency in ex vivo working rodent hearts within the PVA-MVO2 framework. Acta Physiol (Oxford, England). 2007;190(2):171–175.
Google Scholar | Crossref | Medline32. Opie, LH. Heart Physiology: From Cell to Circulation. Lippincott Williams & Wilkins; 2004.
Google Scholar33. Demaison, L, Grynberg, A. Cellular and mitochondrial energy metabolism in the stunned myocardium. Basic Res Cardiol. 1994;89(4):293–307.
Google Scholar | Medline34. Myrmel, T, Forsdahl, K, Larsen, TS. Triacylglycerol metabolism in hypoxic, glucose-deprived rat cardiomyocytes. J Mol Cell Cardiol. 1992;24(8):855–868.
Google Scholar | Crossref | Medline35. Borst, P, Loos, JA, Christ, EJ, Slater, EC. Uncoupling activity of long-chain fatty acids. Biochim Biophys Acta. 1962;62:509–518.
Google Scholar | Crossref | Medline | ISI36. Boardman, NT, Larsen, TS, Severson, DL, Essop, MF, Aasum, E. Chronic and acute exposure of mouse hearts to fatty acids increases oxygen cost of excitation-contraction coupling. Am J Physiol Heart Circ Physiol. 2011;300(5):H1631–H1636.
Google Scholar | Crossref | Medline37. Aasum, E, Hafstad, AD, Larsen, TS. Changes in substrate metabolism in isolated mouse hearts following ischemia-reperfusion. Mol Cell Biochem. 2003;249(1-2):97–103.
Google Scholar | Crossref | Medline38. Randle, PJ, Garland, PB, Hales, CN, Newsholme, EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet (London, England). 1963;1(7285):785–789.
Google Scholar | Crossref | Medline39. Gauthier, C, Leblais, V, Kobzik, L, et al. The negative inotropic effect of beta3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. J Clin Investig. 1998;102(7):1377–1384.
Google Scholar | Crossref | Medline40. Dal Monte, M, Fornaciari, I, Nicchia, GP, Svelto, M, Casini, G, Bagnoli P . β3-adrenergic receptor activity modulates melanoma cell proliferation and survival through nitric oxide signaling. Naunyn Schmiedebergs Arch Pharmacol. 2014;387(6):533–543.
Google Scholar | Crossref | Medline41. Næsheim, T, How, OJ, Myrmel, T. Hemodynamic effects of a soluble guanylate cyclase stimulator, riociguat, and an activator, cinaciguat, during NO-modulation in healthy pigs. J Cardiovasc Pharmacol Ther. 2021;26(1):75–87.
Google Scholar | SAGE Journals | ISI42. Chaudhry, A, MacKenzie, RG, Georgic, LM, Granneman, JG. Differential interaction of beta 1- and beta 3-adrenergic receptors with Gi in rat adipocytes. Cell Signal. 1994;6(4):457–465.
Google Scholar | Crossref | Medline43. Thomas, RF, Holt, BD, Schwinn, DA, Liggett, SB. Long-term agonist exposure induces upregulation of beta 3-adrenergic receptor expression via multiple cAMP response elements. Proc Natl Acad Sci USA. 1992;89(10):4490–4494.
Google Scholar | Crossref | Medline44. Bristow, MR, Ginsburg, R, Minobe, W, et al. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med. 1982;307(4):205–211.
Google Scholar | Crossref | Medline | ISI45. Annane, D, Vignon, P, Renault, A, et al. Norepinephrine plus dobutamine versus epinephrine alone for management of septic shock: a randomised trial. Lancet (London, England). 2007;370(9588):676–684.
Google Scholar | Crossref | Medline | ISI46. Bistola, V, Arfaras-Melainis, A, Polyzogopoulou, E, Ikonomidis, I, Parissis, J. Inotropes in acute heart failure: from guidelines to practical use: therapeutic options and clinical practice. Card Fail Rev. 2019;5(3):133–139.
Google Scholar | Crossref | Medline47. Mebazaa, A, Nieminen, MS, Packer, M, et al. Levosimendan vs dobutamine for patients with acute decompensated heart failure: the SURVIVE Randomized Trial. JAMA. 2007;297(17):1883–1891.
Google Scholar | Crossref | Medline | ISI48. Tacon, CL, McCaffrey, J, Delaney, A. Dobutamine for patients with severe heart failure: a systematic review and meta-analysis of randomised controlled trials. Intensive Care Med. 2012;38(3):359–367.

留言 (0)

沒有登入
gif