1. Wang, A, Rafalko, J, MacDonald, M, Ming, X, Kocharian, R. Absorbable hemostatic aggregates. ACS Biomater Sci Eng. 2017;3(12):3675-3686. doi:
10.1021/acsbiomaterials.7b00382.
Google Scholar |
Crossref |
Medline2. Logun, MT, Dowling, MB, Raghavan, SR, et al. Expanding hydrophobically modified chitosan foam for internal surgical hemostasis: Safety evaluation in a murine model. J Surg Res. Jul. 2019;239:269-277. doi:
10.1016/j.jss.2019.01.060.
Google Scholar |
Crossref |
Medline3. Kim, MJ, Kim, JH, Kim, JS, Choe, JH. Evaluation of a novel collagen hemostatic matrix: Comparison of two hemostatic matrices in a rabbits jejunal artery injury model. J Surg Res. 2019;243:553-559. doi:
10.1016/j.jss.2019.05.017.
Google Scholar |
Crossref |
Medline4. Xi, C, Zhu, L, Yuan, Z, Wang, S, Wang, D. Experimental evaluation of tranexamic acid–loaded porous starch as a hemostatic powder. Clin Appl Thromb Hemost. 2017;24(5):279-286. doi:
10.1177/1076029617716770.
Google Scholar |
SAGE Journals5. Scmab, C, Rlr, C, Ypb, A, Amc, C, Cavba, B, Jddb, A. Biocompatibility testing of novel starch-based materials with potential application in orthopaedic surgery: a preliminary study - ScienceDirect. Biomaterials. 2001;22(14):2057-2064.
Google Scholar |
Crossref |
Medline6. Aydemir Sezer, U, Kocer, Z, Sahin, I, Aru, B, Yanikkaya Demirel, G, Sezer, S. Oxidized regenerated cellulose cross-linked gelatin microparticles for rapid and biocompatible hemostasis: A versatile cross-linking agent. Carbohydr Polym. Nov. 2018;15200:624-632. doi:
10.1016/j.carbpol.2018.07.074.
Google Scholar |
Crossref7. Zhu, J, Sun, W, Meng, Z, et al. Preparation and characterization of a new type of porous starch microspheres (PSM) and effect of physicochemical properties on water uptake rate. Int J Biol Macromol. Sep. 2018;116:707-714. doi:
10.1016/j.ijbiomac.2018.05.059.
Google Scholar |
Crossref |
Medline8. Turliuc, D, Cucu, A, Cruleanu, A, Costea, CF. Efficiency and safety of microporous polysaccharide hemispheres from potato starch in brain surgery. Cellul Chem Technol. 2018;52(7-8):505-513.
Google Scholar9. Humphreys, MR, Castle, EP, Andrews, PE, Gettman, MT, Ereth, MH. Microporous polysaccharide hemospheres for management of laparoscopic trocar injury to the spleen. Am J Surg. Jan. 2008;195(1):99-103. doi:
10.1016/j.amjsurg.2007.03.006.
Google Scholar |
Crossref |
Medline10. Tan, SR, Tope, WD. Effectiveness of microporous polysaccharide hemospheres for achieving hemostasis in mohs micrographic surgery. Dermatol Surg. 2010;30(6):908-914. doi:
10.1111/j.1524-4725.2004.30261.x.
Google Scholar |
Crossref11. Ho, J, Hruza, G. Hydrophilic polymers with potassium salt and microporous polysaccharides for use as hemostatic agents. Dermatol Surg. 2007;33(12):1430-1433. doi:
10.1111/j.1524-4725.2007.33312.x.
Google Scholar |
Crossref |
Medline12. Antisdel, JL, Janney, CG, Long, JP, Sindwani, R. Hemostatic agent microporous polysaccharide hemospheres (MPH) does not affect healing or intact sinus mucosa. Laryngoscope. 2008;118(7):1265-1269. doi:
10.1097/MLG.0b013e31816c7bc9.
Google Scholar |
Crossref |
Medline13. Ereth, MH, Schaff, M, Ericson, EF, Wetjen, NM, Nuttall, GA, Oliver, WC. Comparative safety and efficacy of topical hemostatic agents in a rat neurosurgical model. Neurosurgery. 2008;63(4 Suppl 2):369-372. doi:
10.1227/01.NEU.0000327031.98098.
Google Scholar |
Crossref |
Medline14. Chiara, O, Cimbanassi, S, Bellanova, G, et al. A systematic review on the use of topical hemostats in trauma and emergency surgery. BMC Surg. 2018;18(1):68. doi:
10.1186/s12893-018-0398-z.
Google Scholar |
Crossref |
Medline15. Zhu, J, Sun, Y, Sun, W, et al. Calcium ion-exchange cross-linked porous starch microparticles with improved hemostatic properties. Int J Biol Macromol. 2019;134:435-444. doi:
10.1016/j.ijbiomac.2019.05.086.
Google Scholar |
Crossref |
Medline16. Mulinti, P, Brooks, JE, Lervick, B, Pullan, JE, Brooks, AE. Strategies to improve the hemocompatibility of biodegradable biomaterials. In: Siedlecki, C, Christopher, A, eds. Hemocompatibility of Biomaterials for Clinical Applications. Sawston, United Kingdom: Woodhead; 2018:253-278. doi:
10.1016/B978-0-08-100497-5.00017-3 Google Scholar |
Crossref17. Chen, F, Cao, X, Chen, X, Wei, J, Liu, C. Calcium-modified microporous starch with potent hemostatic efficiency and excellent degradability for hemorrhage control. J Mater Chem B. 2015;3(19):4017-4026. doi:
10.1039/c5tb00250h.
Google Scholar |
Crossref |
Medline18. Murat, F, Le, CQ, Ereth, MH, Piedra, MP, Yue, D, Gettman, MT. Evaluation of Microporous Polysaccharide Hemospheres for Parenchymal Hemostasis During Laparoscopic Partial Nephrectomy in the Porcine Model. JSLS-J Soc Laparoend. 2006;10(3):302-306.
Google Scholar |
Medline19. Singh, RK, Baumgartner, B, Mantei, JR, et al. Hemostatic Comparison of a Polysaccharide Powder and a Gelatin Powder. J Invest Surg. Aug. 2019;32(5):393-401. doi:
10.1080/08941939.2017.1423421.
Google Scholar |
Crossref |
Medline20. Panwar, V, Sharma, A, Thomas, J, et al. In-vitro and In-vivo evaluation of biocompatible and biodegradable calcium-modified carboxymethyl starch as a topical hemostat. Materialia. 2019;7(4). doi:
10.1016/j.mtla.2019.100373.
Google Scholar |
Crossref21. Chen, Y, Qian, J, Zhao, C, Yang, L, Ding, J, Guo, H. Preparation and evaluation of porous starch/chitosan composite cross-linking hemostatic. Eur Polym J. 2019;118:17-26. doi:
10.1016/j.eurpolymj.2019.05.039.
Google Scholar |
Crossref22. Li, Q, Lu, F, Shang, S, et al. Biodegradable microporous starch with assembled thrombin for rapid induction of hemostasis. ACS Sustainable Chem Eng. 2019;7(10):9121-9132. doi:
10.1021/acssuschemeng.8b05701.
Google Scholar |
Crossref23. Gu, R, Sun, W, Hong, Z, et al. The performance of a fly-larva shell-derived chitosan sponge as an absorbable surgical hemostatic agent. Biomaterials. 2010;31(6):1270-1277. doi:
10.1016/j.biomaterials.2009.10.023.
Google Scholar |
Crossref |
Medline24. Huang, X, Sun, Y, Nie, J, et al. Using absorbable chitosan hemostatic sponges as a promising surgical dressing. Int J Biol Macromol. Apr. 2015;75:322-329. doi:
10.1016/j.ijbiomac.2015.01.049.
Google Scholar |
Crossref |
Medline |
ISI25. Fukushima, K, Tanaka, H, Kadaba Srinivasan, P, et al. Hemostatic Efficacy and Safety of the Novel Medical Adhesive, MAR VIVO-107, in a Rabbit Liver Resection Model. Eur Surg Res. 2018;59(1-2):48-57. doi:
10.1159/000481818.
Google Scholar |
Crossref |
Medline26. Biological Evaluation of Medical Devices - Part 6: Tests for Local Effects after Implantation (ISO 10993-6). International Organization for Standardization; 2017.
Google Scholar27. Shi, Z, Lan, G, Hu, E, et al. Puff pastry-like chitosan/konjac glucomannan matrix with thrombin-occupied microporous starch particles as a composite for hemostasis. Carbohydr Polym. 2020;232:115814. doi:
10.1016/j.carbpol.2019.115814.
Google Scholar |
Crossref |
Medline28. Morgan, CE, Prakash, VS, Vercammen, JM, Pritts, T, Kibbe, MR. Development and validation of 4 different rat models of uncontrolled hemorrhage. JAMA Surg. 2015;150(4):316-324. doi:
10.1001/jamasurg.2014.1685.
Google Scholar |
Crossref |
Medline29. Bjorses, K, Faxalv, L, Montan, C, et al. In vitro and in vivo evaluation of chemically modified degradable starch microspheres for topical haemostasis. Acta Biomater. 2011;7(6):2558-2565. doi:
10.1016/j.actbio.2011.03.003.
Google Scholar |
Crossref |
Medline30. Yang, X, Liu, W, Li, N, et al. Design and development of polysaccharide hemostatic materials and their hemostatic mechanism. Biomater Sci. 2017;21(12):2357-2368. doi:
10.1039/c7bm00554g.
Google Scholar |
Crossref31. Kamel, RM . Prevention of postoperative peritoneal adhesions. Eur J Obstet Gynecol Reprod Biol. 2010;150(2):111-118. doi:
10.1016/j.ejogrb.2010.02.003.
Google Scholar |
Crossref |
Medline32. Ereth, MH, Dong, Y, Schrader, LM, et al. Microporous polysaccharide hemospheres do not enhance abdominal infection in a rat model compared with gelatin matrix. Surg Infect (Larchmt). 2009;10(3):273-276. doi:
10.1089/sur.2007.033.
Google Scholar |
Crossref |
Medline
Comments (0)