1.
Hu, Y, Fu, L. Targeting cancer stem cells: a new therapy to cure cancer patients. Am J Cancer Res. 2012;2:340-356.
Google Scholar |
Medline2.
Hanahan, D, Weinberg, RA. The hallmarks of cancer. Cell. 2000;100:57-70.
Google Scholar |
Crossref |
Medline |
ISI3.
Hanahan, D, Weinberg, RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646-674.
Google Scholar |
Crossref |
Medline |
ISI4.
Colotta, F, Allavena, P, Sica, A, Garlanda, C, Mantovani, A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;30:1073-1081.
Google Scholar |
Crossref |
Medline |
ISI5.
Williams, P, Galipeau, J. GM-CSF-based fusion cytokines as ligands for immune modulation. J Immunol. 2011;186:5527-5532.
Google Scholar |
Crossref |
Medline6.
Uhlén, M, Forsberg, G, Moks, T, Hartmanis, M, Nilsson, B. Fusion proteins in biotechnology. Curr Opin Biotechnol. 1992;3:363-369. doi:
10.1016/0958-1669(92)90164-E. Google Scholar |
Crossref |
Medline7.
Weidle, UH, Schneider, B, Georges, G, Brinkmann, U. Genetically engineered fusion proteins for treatment of cancer. Cancer Genomics Proteomics. 2012;9:357-372.
Google Scholar |
Medline8.
Shibuya, M, Yamaguchi, S, Yamane, A, et al. Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. Oncogene. 1990;5:519-524.
Google Scholar |
Medline |
ISI9.
de Vries, C, Escobedo, JA, Ueno, H, Houck, K, Ferrara, N, Williams, LT. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science. 1992;255:989-991.
Google Scholar |
Crossref |
Medline |
ISI10.
Dumont, DJ, Fong, GH, Puri, MC, Gradwohl, G, Alitalo, K, Breitman, ML. Vascularization of the mouse embryo: a study of flk-1, tek, tie, and vascular endothelial growth factor expression during development. Dev Dyn. 1995;203:80-92.
Google Scholar |
Crossref |
Medline |
ISI11.
Kendall, RL, Thomas, KA. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci USA. 1993;90:10705-10709.
Google Scholar |
Crossref |
Medline |
ISI12.
Shibuya, M. Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): a dual regulator for angiogenesis. Angiogenesis. 2006;9:225-230; discussion 231. doi:
10.1007/s10456-006-9055-8. Google Scholar |
Crossref |
Medline13.
Morgan, DA, Ruscetti, FW, Gallo, R. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science. 1976;193:1007-1008. doi:
10.1126/science.181845. Google Scholar |
Crossref |
Medline |
ISI14.
Malek, TR. The biology of interleukin-2. Annu Rev Immunol. 2008;26:453-479. doi:
10.1146/annurev.immunol.26.021607.090357. Google Scholar |
Crossref |
Medline |
ISI15.
Wang, X, Lupardus, P, Laporte, SL, Garcia, KC. Structural biology of shared cytokine receptors. Annu Rev Immunol. 2009;27:29-60.
Google Scholar |
Crossref |
Medline16.
Jiang, T, Zhou, C, Ren, S. Role of IL-2 in cancer immunotherapy. Oncoimmunology. 2016;5:e1163462. doi:
10.1080/2162402X.2016.1163462. Google Scholar |
Crossref17.
Skrombolas, D, Frelinger, JG. Challenges and developing solutions for increasing the benefits of IL-2 treatment in tumor therapy. Expert Rev Clin Immunol. 2014;10:207-217. doi:
10.1586/1744666X.2014.875856. Google Scholar |
Crossref |
Medline18.
Paliard, X, de Waal Malefijt, R, Yssel, H, et al. Simultaneous production of IL-2, IL-4, and IFN-gamma by activated human CD4Cand CD8CT cell clones. J Immunol. 1988;141:849-855. doi:
10.0022-l767/88/1413-0849$02.00. Google Scholar |
Crossref |
Medline |
ISI19.
Leonard, WJ. Cytokines and immunodeficiency diseases. Nat Rev Immunol. 2001;1:200-208. doi:
10.1038/35105066. Google Scholar |
Crossref |
Medline |
ISI20.
Yui, MA, Sharp, LL, Havran, WL, Rothenberg, EV. Preferential activation of an IL-2 regulatory sequence transgene in TCR gamma delta and NKT cells: subset-specific differences in IL-2 regulation. J Immunol. 2004;172:4691-4699. doi:
10.4049/jimmunol.172.8.4691. Google Scholar |
Crossref |
Medline21.
Paul, WE, Zhu, J. How are T(H)2-type immune responses initiated and amplified? Nat Rev Immunol. 2010;10:225-235. doi:
10.1038/nri2735. Google Scholar |
Crossref |
Medline |
ISI22.
Szabo, SJ, Sullivan, BM, Peng, SL, Glimcher, LH. Molecular mechanisms regulating Th1 immune responses. Annu Rev Immunol. 2003;21:713-758. doi:
10.1146/annurev.immunol.21.120601.140942. Google Scholar |
Crossref |
Medline |
ISI23.
Littman, DR, Rudensky, AY. Th17 and regulatory T cells in mediating and restraining inflammation. Cell. 2010;140:845-858. doi:
10.1016/j.cell.2010.02.021. Google Scholar |
Crossref |
Medline |
ISI24.
Rudensky, AY. Regulatory T cells and Foxp3. Immunol Rev. 2011;241:260-268. doi:
10.1111/j.1600065X.2011.01018.x. Google Scholar |
Crossref |
Medline |
ISI25.
Leonard, WJ, Kronke, M, Peffer, NJ, Depper, JM, Greene, WC. Interleukin 2 receptor gene expression in normal human T lymphocytes. Proc Natl Acad Sci USA. 1985;82:6281-6285. doi:
10.1073/pnas.82.18.6281. Google Scholar |
Crossref |
Medline26.
Brisslert, M, Bokarewa, M, Larsson, P, Wing, K, Collins, LV, Tarkowski, A. Phenotypic and functional characterization of human CD25C B cells. Immunology. 2006;117:548-557. doi:
10.1111/j.1365-2567.2006.02331.x. Google Scholar |
Crossref |
Medline27.
Kronin, V, Vremec, D, Shortman, K. Does the IL-2 receptor alpha chain induced on dendritic cells have a biological function? Int Immunol. 1998;10:237-240. doi:
10.1093/intimm/10.2.237. Google Scholar |
Crossref |
Medline28.
Krieg, C, Letourneau, S, Pantaleo, G, Boyman, O. Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells. Proc Natl Acad Sci USA. 2010;107:11906-11911. doi:
10.1073/pnas.1002569107. Google Scholar |
Crossref |
Medline29.
Ghorbani Aghdam, A, Moradhaseli, S, Jafari, F, et al. Therapeutic Fc fusion protein misfolding: a three-phasic cultivation experimental design. PLoS ONE. 2019;14:e0210712. doi:
10.1371/journal.pone.0210712. Google Scholar |
Crossref |
Medline30.
Argos, P. An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion. J Mol Biol. 1990;211:943-958.
Google Scholar |
Crossref |
Medline31.
Gasteiger, E, Hoogland, C, Gattiker, A, et al. Protein identification and analysis tools on the ExPASy server. In: Walker, JM , ed. The Proteomics Protocols Handbook (Springer Protocols Handbooks). Totowa, NJ: Humana Press; 2005:571-607. doi:
10.1385/1-59259-890-0:571. Google Scholar |
Crossref32.
Guruprasad, K, Reddy, BB, Pandit, MW. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng. 1990;4:155-161.
Google Scholar |
Crossref |
Medline33.
Ikai, A. Thermostability and aliphatic index of globular proteins. J Biochem. 1980;88:1895-1898.
Google Scholar |
Medline |
ISI34.
Kyte, J, Doolittle, RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157:105-132.
Google Scholar |
Crossref |
Medline |
ISI35.
Kumar, AT. CFSSP: Chou and Fasman Secondary Structure Prediction server. Wide Spectr. 2013;1:15-19. doi:
10.5281/zenodo.50733. Google Scholar |
Crossref36.
McGuffin, JL, Kevin, B, David, JT. The PSIPRED protein structure prediction server. Bioinformatics. 2000;6:404-405. doi:
10.1093/bioinformatics/16.4.404. Google Scholar |
Crossref37.
Combet, C, Blanchet, C, Geourjon, C, Deléage, G.
[email protected]: network protein sequence analysis. Trends Biochem Sci. 2000;25:147-150. doi:
10.1016/s0968-0004(99)01540-6. Google Scholar |
Crossref |
Medline |
ISI38.
Xu, J, Li, M, Lin, G, Kim, D, Xu, Y. Protein threading by linear programming. Pac Symp Biocomput. 2003;8:264-275.
Google Scholar39.
Lovell, SC, Davis, IW, Arendall, WB, et al. Structure validation by Cα geometry: φ, ψ and Cβ deviation. Proteins. 2003;50:437-450.
Google Scholar |
Crossref |
Medline |
ISI40.
Hess, BD, van der Spoel Lindahl, E. GROMACS Groningen machine for chemical simulations. User manual, version 4.5.4.
https://ftp.gromacs.org/pub/manual/manual-4.5.4.pdf.
Google Scholar41.
Abraham, M, Hess, B, Spoel, D, Lindahl, E. GROMACS user manual, version 5.0. 1.
http://www.gromacs.org. Published 2014.
Google Scholar42.
Wriggers, W, Chakravarty, S, Jennings, PA. Control of protein functional dynamics by peptide linkers. Biopolymers. 2005;80:736-746. doi:
10.1002/bip.20291. Google Scholar |
Crossref |
Medline43.
Allen, MP . Introduction to molecular dynamics simulation. In: Attig, N, Binder, K, Grubmuller, H, Kremer, K, eds. Computational Soft Matter: From Synthetic Polymers to Proteins. Vol. 23. Julich, Germany: John von Neumann Institute for Computing; 2004:1-28.
Google Scholar44.
Ju, G, Collins, L, Kaffka, KL, et al. Structure-function analysis of human interleukin-2. Identification of amino acid residues required for biological activity. J Biol Chem. 1987;262:5723-5731.
Google Scholar |
Crossref |
Medline45.
Astuti, A, Mutiara, A. Performance analysis on molecular dynamics simulation of protein using GROMACS. arXiv preprint arXiv. 2009:0912.0893.
Google Scholar46.
Pace, CN, Shirley, BA, McNutt, M, Gajiwala, K. Forces contributing to the conformational stability of proteins. FASEB J. 1996;10:75-83.
Google Scholar |
Crossref |
Medline |
ISI47.
Luo, YZ, Baldwin, RL. How Ala → Gly mutations in different helices affect the stability of the apomyoglobin molten globule. Biochemistry. 2001;40:5283-5289.
Google Scholar |
Crossref |
Medline48.
Choi, HS, Huh, J, Jo, WH. Similarity of force-induced unfolding of apomyoglobin to its chemical-induced unfolding: an atomistic molecular dynamics simulation approach. Biophys J. 2003;85:1492-1502.
Google Scholar |
Crossref |
Medline
Comments (0)