1. Ghio, AJ, Soukup, JM, Dailey, LA, et al. Wood smoke particle sequesters cell iron to impact a biological effect. Chem Res Toxicol. 2015;28(11):2104-2111.
Google Scholar |
Crossref |
Medline2. World Health Organization . Air Pollution, Percentage of the Population Using Biomass Fuels, Millennium Indicators Database. New York, NY: United Nations, Department of Economic and Social Affairs, Economic and Social Development, Statistics Division.
http://millenniumindicators.un.org/unsd/mi/mi_series_results.asp?rowId=712)._results.asp?rowId=712.
Google Scholar3. International Energy Agency . World Energy Outlook 2004. Paris, France: Organization for Economic Co-operation and Development/International Energy Agency, 2004.
Google Scholar |
Crossref4. Walker, PF, Buehner, MF, Wood, LA, et al. Diagnosis and management of inhalation injury: an updated review. Crit Care. 2015;19(1):351-412.
Google Scholar |
Crossref |
Medline5. Gupta, K, Mehrotra, M, Kumar, P, Gogia, AR, Prasad, A, Fisher, JA. Smoke inhalation injury: etiopathogenesis, diagnosis, and management. Indian J Crit Care Med. 2018;22(3):180-188.
Google Scholar |
Crossref |
Medline6. Swiston, JR, Davidson, W, Attridge, S, Li, GT, Brauer, M, vanEeden, SF. Wood smoke exposure induces a pulmonary and systemic inflammatory response in firefighters. Eur Respir J. 2008;32(1):129-138.
Google Scholar |
Crossref |
Medline7. Zeglinski, MR, Turner, CT, Zeng, R, et al. Soluble wood smoke extract promotes barrier dysfunction in alveolar epithelial cells through a MAPK signaling pathway. Sci Rep. 2019;9(1):10027.
Google Scholar |
Crossref |
Medline8. Dilger, M, Orasche, J, Zimmermann, R, Paur, H-R, Diabaté, S, Weiss, C. Toxicity of wood smoke particles in human A549 lung epithelial cells: the role of PAHs, soot and zinc. Arch Toxicol. 2016;90(12):3029-3044.
Google Scholar |
Crossref |
Medline9. Capistrano, S, Zakarya, R, Chen, H, Oliver, B. Biomass smoke exposure enhances rhinovirus-induced inflammation in primary lung fibroblasts. Int J Mol Sci. 2016;17(9):1403.
Google Scholar |
Crossref10. Amador-Muñoz, O, Martínez-Domínguez, YM, Gómez-Arroyo, S, Peralta, O. Current situation of polycyclic aromatic hydrocarbons (PAH) in PM2.5 in a receptor site in Mexico City and estimation of carcinogenic PAH by combining non-real-time and real-time measurement techniques. Sci Total Environ. 2020;703:134526.
Google Scholar |
Crossref |
Medline11. Corsini, E, Marinovich, M, Vecchi, R. Ultrafine particles from residential biomass combustion: a review on experimental data and toxicological response. Int J Mol Sci. 2019;20(20):4992.
Google Scholar |
Crossref12. Abdel-Shafy, HI, Mansour, MSM. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet. 2016;25(1):107-123.
Google Scholar |
Crossref13. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans . Some non-heterocyclic Hpolycyclic aromatic hydrocarbons and some related exposures. iarc monographs on the evaluation of carcinogenic risks to humans. IARC Monogr Eval Carcinog Risks Hum. 2010;92:1-853.
Google Scholar |
Medline14. Moorthy, B, Chu, C, Carlin, DJ. Polycyclic aromatic hydrocarbons: from metabolism to lung cancer. Toxicol Sci. 2015;145(1):5-15.
Google Scholar |
Crossref |
Medline15. Ravindra, K, Sokhi, R, Vangrieken, R. Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ. 2008;42(13):2895-2921.
Google Scholar |
Crossref16. Martey, CA, Baglole, CJ, Gasiewicz, TA, Sime, PJ, Phipps, RP. The aryl hydrocarbon receptor is a regulator of cigarette smoke induction of the cyclooxygenase and prostaglandin pathways in human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol. 2005;289(3):L391-L399.
Google Scholar |
Crossref |
Medline17. Ono, Y, Torii, K, Fritsche, E, et al. Role of the aryl hydrocarbon receptor in tobacco smoke extract-induced matrix metalloproteinase-1 expression. Exp Dermatol. 2013;22(5):349-353.
Google Scholar |
Crossref |
Medline |
ISI18. Awji, EG, Chand, H, Bruse, S, et al. Wood smoke enhances cigarette smoke-induced inflammation by inducing the aryl hydrocarbon receptor repressor in airway epithelial cells. Am J Respir Cell Mol Biol. 2015;52(3):377-386.
Google Scholar |
Crossref |
Medline19. Miyata, R, vanEeden, SF. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter. Toxicol Appl Pharmacol. 2011;257(2):209-226.
Google Scholar |
Crossref |
Medline20. Sato, E, Koyama, S, Takamizawa, A, et al. Smoke extract stimulates lung fibroblasts to release neutrophil and monocyte chemotactic activities. Am J Physiol Lung Cell Mol Physiol. 1999;277(6):L1149-L1157.
Google Scholar |
Crossref21. Schwartz, C, Bølling, AK, Carlsten, C. Controlled human exposures to wood smoke: a synthesis of the evidence. Part Fibre Toxicol. 2020;17(1):49.
Google Scholar |
Crossref |
Medline22. Krimmer, DI, Burgess, JK, Wooi, TK, Black, JL, Oliver, BGG. Matrix proteins from smoke-exposed fibroblasts are pro-proliferative. Am J Respir Cell Mol Biol. 2012;46(1):34-39.
Google Scholar |
Crossref |
Medline23. Lee, T-S, Liu, Y-J, Tang, G-J, Yien, H-W, Wu, Y-L, Kou, YR. Wood smoke extract promotes both apoptosis and proliferation in rat alveolar epithelial type II cells: the role of oxidative stress and heme oxygenase-1*. Crit Care Med. 2008;36(9):2597-2606.
Google Scholar |
Crossref |
Medline24. Liu, P-L, Chen, Y-L, Chen, Y-H, Lin, S-J, Kou, YR. Wood smoke extract induces oxidative stress-mediated caspase-independent apoptosis in human lung endothelial cells: role of AIF and EndoG. Am J Physiol Lung Cell Mol Physiol. 2005;289(5):L739-L749.
Google Scholar |
Crossref |
Medline25. Krimmer, D, Ichimaru, Y, Burgess, J, Black, J, Oliver, B. Exposure to biomass smoke extract enhances fibronectin release from fibroblasts. PloS One. 2013;8(12):e83938.
Google Scholar |
Crossref |
Medline26. Ramos, C, Montaño, M, Garcí́a-Alvarez, J, et al. Fibroblasts from idiopathic pulmonary fibrosis and normal lungs differ in growth rate, apoptosis, and tissue inhibitor of metalloproteinases expression. Am J Respir Cell Mol Biol. 2001;24(5):591-598.
Google Scholar |
Crossref |
Medline27. González-Ávila, G, Sommer, B, García-Hernández, AA, Ramos, C. Matrix metalloproteinases’ role in tumor microenvironment. Adv Exp Med Biol. 2020;1245:97-131.
Google Scholar |
Crossref |
Medline28. Becerril, C, Montaño, M, Cisneros, J, et al. Mesenchymal-epithelial transition in fibroblasts of human normal lungs and interstitial lung diseases. Biomolecules. 2021;11(3):378.
Google Scholar |
Crossref |
Medline29. Bourgeois, JS, Jacob, J, Garewal, A, Ndahayo, R, Paxson, J. The bioavailability of soluble cigarette smoke extract is reduced through interactions with cells and affects the cellular response to CSE exposure. PLoS One. 2016;11(9):e0163182.
Google Scholar |
Crossref |
Medline30. Ramos, C, Montaño, M, Becerril, C, et al. Acidic fibroblast growth factor decreases α-smooth muscle actin expression and induces apoptosis in human normal lung fibroblasts. Am J Physiol Lung Cell Mol Physiol. 2006;291(5):L871-L879.
Google Scholar |
Crossref |
Medline31. Vang, A, Clements, RT, Chichger, H, et al. Effect of α7 nicotinic acetylcholine receptor activation on cardiac fibroblasts: a mechanism underlying RV fibrosis associated with cigarette smoke exposure. Am J Physiol Lung Cell Mol Physiol. 2017;312(5):L748-L759.
Google Scholar |
Crossref |
Medline32. Bradford, MM . A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-254.
Google Scholar |
Crossref |
Medline |
ISI33. Zhang, B-B, Shen, X, Li, X-J, Tian, Y-B, Ouyang, H-J, Huang, Y-M. Reference gene selection for expression studies in the reproductive axis tissues of magang geese at different reproductive stages under light treatment. Sci Rep. 2021;11(1):7573.
Google Scholar |
Crossref |
Medline34. Panina, Y, Germond, A, Masui, S, Watanabe, TM. Validation of common housekeeping genes as reference for qPCR gene expression analysis during iPS reprogramming process. Sci Rep. 2018;8(1):8716.
Google Scholar |
Crossref |
Medline35. Rhee, KS, Bratzler, LJ. Polycyclic hydrocarbon composition of wood smoke. J Food Sci. 1968;33(6):626-632.
Google Scholar |
Crossref36. Lee, TS, Liu, YJ, Tang, GJ, et al. Wood smoke extract promotes both apoptosis and proliferation in rat alveolar epithelial type II cells: the role of oxidative stress and heme oxygenase-1. Crit Care Med. 2008;36(9):2597–2606.
Google Scholar |
Crossref |
Medline37. Leonard, SS, Wang, S, Shi, X, Jordan, BS, Castranova, V, Dubick, MA. Wood smoke particles generate free radicals and cause lipid peroxidation, DNA damage, NFkappaB activation and TNF-alpha release in macrophages. Toxicology. 2000;150(1-3):147-157.
Google Scholar |
Crossref |
Medline |
ISI38. Luppi, F, Aarbiou, J, vanWetering, S, Rahman, I, deBoer, WI, Rabe, KF, et al. Effects of cigarette smoke condensate on proliferation and wound closure of bronchial epithelial cells in vitro: role of glutathione. Respir Res. 2005;6(1):140.
Google Scholar |
Crossref |
Medline39. LaRocca, G, Anzalone, R, Magno, F, Farina, F, Cappello, F, Zummo, G. Cigarette smoke exposure inhibits extracellular MMP-2 (gelatinase A) activity in human lung fibroblasts. Respir Res. 2007;8(1):23.
Google Scholar |
Crossref |
Medline40. Sekhon, HS, Wright, JL, Churg, A. Cigarette smoke causes rapid cell proliferation in small airways and associated pulmonary arteries. The American journal of physiology. 1994;267(5 Pt 1):L557-L563.
Google Scholar |
Medline41. Li, E, Xu, Z, Liu, F, Wang, H, Wen, J, Shao, S, et al. Continual exposure to cigarette smoke extracts induces tumor-like transformation of human nontumor bronchial epithelial cells in a microfluidic chip. J Thorac Oncol. 2014;9(8):1091-1100.
Google Scholar |
Crossref |
Medline42. Lannan, S, Donaldson, K, Brown, D, MacNee, W. Effect of cigarette smoke and its condensates on alveolar epithelial cell injury in vitro. The American journal of physiology. 1994;266(1 Pt 1):L92-L100.
Google Scholar |
Medline43. Yuan, F, Dong, P, Wang, X, Fu, X, Dai, M, Zhang, W. Toxicological effects of cigarette smoke on Ana-1 macrophages in vitro. Exp Toxicol Pathol. 2013;65(7-8):1011-1018.
Google Scholar |
Crossref |
Medline44. Kulkarni, T, O’Reilly, P, Antony, VB, Gaggar, A, Thannickal, VJ. Matrix remodeling in pulmonary fibrosis and emphysema. Am J Respir Cell Mol Biol. 2016;54(6):751-760.
Google Scholar |
Crossref |
Medline45. Fricker, M, Deane, A, Hansbro, PM. Animal models of chronic obstructive pulmonary disease. Expet Opin Drug Discov. 2014;9(6):629-645.
Google Scholar |
Crossref |
Medline46. Ramos, C, Cisneros, J, Gonzalez-Avila, G, Becerril, C, Ruiz, V, Montaño, M. Increase of matrix metalloproteinases in woodsmoke-induced lung emphysema in guinea pigs. Inhal Toxicol. 2009;21(2):119-132.
Google Scholar |
Crossref |
Medline47. Li, S, Li, Y, Lu, Y, Zhao, Z, Wang, J, Li, J, et al. Relationships of MMP-9 and TIMP-1 proteins with chronic obstructive pulmonary disease risk: a systematic review and meta-analysis. J Res Med Sci. 2016;21:12.
Google Scholar |
Crossref |
Medline48. Gonzalez-Avila, G, Sommer, B, Mendoza-Posada, DA, Ramos, C, Garcia-Hernandez, AA, Falfán-Valencia, R. Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer. Crit Rev Oncol Hematol. 2019;137:57-83.
Google Scholar |
Crossref |
Medline49. Alexandrov, K, Rojas, M, Satarug, S. The critical DNA damage by benzo(a)pyrene in lung tissues of smokers and approaches to preventing its formation. Toxicol Lett. 2010;198:63-68.
Comments (0)