Usability, functionality, and efficacy of a custom myoelectric elbow-wrist-hand orthosis to assist elbow function in individuals with stroke

1. Raghavan, P. Upper limb motor impairment after stroke. Phys Med Rehabil Clin N Am 2015; 26: 599–610.
Google Scholar | Crossref | Medline2. Tsao, C-C, Mirbagheri, MM. Upper limb impairments associated with spasticity in neurological disorders. J Neuroeng Rehabil 2007; 4: 45.
Google Scholar | Crossref | Medline | ISI3. Mirbagheri, MM, Settle, K, Harvey, R, et al. Neuromuscular abnormalities associated with spasticity of upper extremity muscles in hemiparetic stroke. J Neurophysiol 2007; 98: 629–637.
Google Scholar | Crossref | Medline | ISI4. Dobkin, BH. Motor rehabilitation after stroke, traumatic brain, and spinal cord injury: common denominators within recent clinical trials. Curr Opin Neurol 2009; 22: 563–569.
Google Scholar | Crossref | Medline | ISI5. Kwakkel, G, Kollen, BJ, van der Grond, J, et al. Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke 2003; 34: 2181–2186.
Google Scholar | Crossref | Medline | ISI6. Gowland, C. Recovery of motor function following stroke: profile and predictors. Physiother Can 1982; 34: 77–84.
Google Scholar | Crossref7. Nakayama, H, Jørgensen, HS, Raaschou, HO, et al. Recovery of upper extremity function in stroke patients: the Copenhagen stroke study. Arch Phys Med Rehabil 1994; 75: 394–398.
Google Scholar | Crossref | Medline | ISI8. Lehneis, HR. Upper-limb orthotics. Orthot Prosthet 1977; 31: 14–20.
Google Scholar9. Mayr, A, Kofler, M, Saltuari, L. ARMOR: an electromechanical robot for upper limb training following stroke. A prospective randomised controlled pilot study. Handchir Mikrochir Plast Chir 2008; 40: 66–73.
Google Scholar | Crossref | Medline10. Takahashi, CD, Der-Yeghiaian, L, Le, V, et al. Robot-based hand motor therapy after stroke. Brain 2008; 131: 425–437.
Google Scholar | Crossref | Medline | ISI11. Tyson, SF, Kent, RM. The effect of upper limb orthotics after stroke: a systematic review. NeuroRehabilitation 2011; 28: 29–36.
Google Scholar | Crossref | Medline | ISI12. Stein, J. e100 NeuroRobotic system. Expert Rev Med Devices 2009; 6: 15–19.
Google Scholar | Crossref | Medline13. Stein, J, Narendran, K, McBean, J, et al. Electromyography-controlled exoskeletal upper-limb-powered orthosis for exercise training after stroke. Am J Phys Med Rehabil 2007; 86: 255–261.
Google Scholar | Crossref | Medline | ISI14. MyoMo “My Own Motion” , https://myomo.com/ (2018, accessed 9 July 2019).
Google Scholar15. Hawthorne, K. Technology convergence. The O&P Edge, 2013. https://opedge.com/Articles/ViewArticle/2013-07_02 (2013, accessed 9 July 2019).
Google Scholar16. Wengerd, L. Functional utility of wearing a myoelectric orthosis for upper extremity paralysis due to spinal cord injury. Can Prosthet Orthot J 2018; 1–2.
Google Scholar | Crossref17. Blank, AA, French, JA, Pehlivan, AU, et al. Current trends in robot-assisted upper-limb stroke rehabilitation: promoting patient engagement in therapy. Curr Phys Med Rehabil Rep 2014; 2: 184–195.
Google Scholar | Crossref | Medline18. Dunaway, S, Dezsi, DB, Perkins, J, et al. Case report on the use of a custom myoelectric elbow–wrist–hand orthosis for the remediation of upper extremity paresis and loss of function in chronic stroke. Mil Med 2017; 182: e1963–e1968.
Google Scholar | Crossref | Medline19. Kim, GJ, Rivera, L, Stein, J. Combined Clinic-Home approach for upper limb robotic therapy after stroke: a pilot study. Arch Phys Med Rehabil 2015; 96: 2243–2248.
Google Scholar | Crossref | Medline20. Sörös, P, Teasell, R, Hanley, DF, et al. Motor recovery beginning 23 years after ischemic stroke. J Neurophysiol 2017; 118: 778–781.
Google Scholar | Crossref | Medline21. Andriske, L, Verikios, D, Hitch, D. Patient and therapist experiences of the SaeboFlex: a pilot study. Occup Ther Int 2017; 2017: 5462078.
Google Scholar | Crossref | Medline22. McCabe, JP, Henniger, D, Perkins, J, et al. Feasibility and clinical experience of implementing a myoelectric upper limb orthosis in the rehabilitation of chronic stroke patients: a clinical case series report. PLoS One 2019; 14: e0215311.
Google Scholar | Crossref | Medline23. Shoemaker, E. Myoelectric elbow-wrist-hand orthosis with active grasp for patients with stroke: a case series. Can Prosthet Orthot J 2018; 1.
Google Scholar24. Peters, HT, Page, SJ, Persch, A. Giving them a hand: wearing a myoelectric elbow-wrist-hand orthosis reduces upper extremity impairment in chronic stroke. Arch Phys Med Rehabil 2017; 98: 1821–1827.
Google Scholar | Crossref | Medline25. McMorland, AJ, Runnalls, KD, Byblow, WD. A neuroanatomical framework for upper limb synergies after stroke. Front Hum Neurosci 2015; 9: 82.
Google Scholar | Crossref | Medline26. Rose, DK, Winstein, CJ. Bimanual training after stroke: are two hands better than one? Top Stroke Rehabil 2004; 11: 20–30.
Google Scholar | Crossref | Medline27. Nijland, R, van Wegen, E, van der Krogt, H, et al. Characterizing the protocol for early modified constraint‐induced movement therapy in the EXPLICIT‐stroke trial. Physiother Res Int 2013; 18: 1–15.
Google Scholar | Crossref | Medline28. Winstein, CJ, Wolf, SL, Dromerick, AW, et al. Interdisciplinary comprehensive arm rehabilitation evaluation (ICARE): a randomized controlled trial protocol. BMC Neurol 2013; 13: 5.
Google Scholar | Crossref | Medline | ISI

留言 (0)

沒有登入
gif