Potential Destructive Binaural Interaction Effects in Auditory Steady-State Response Measurements

Armstrong, M., Stapells, D. R. (2007). Multiple-stimulus interactions in the brainstem (80 Hz) and cortical (14 & 40 Hz) auditory steady-state responses. http://www.ierasg.ifps.org.pl/files/book_of_abstracts_2007.pdf
Google Scholar Bates, D., Mächler, M., Bolker, B., Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
Google Scholar | Crossref | ISI Bohorquez, J., Ozdamar, O. (2008). Generation of the 40-Hz auditory steady-state response (ASSR) explained using convolution. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 119, 2598–2607. https://doi.org/10.1016/j.clinph.2008.08.002
Google Scholar | Crossref | Medline Cebulla, M., Stürzebecher, E., Elberling, C. (2006). Objective detection of auditory steady-state responses: Comparison of one-sample and q-sample tests. Journal of the American Academy of Audiology, 17, 93–103. https://doi.org/10.3766/jaaa.17.2.3
Google Scholar | Crossref | Medline Denk, F., Ernst, S., Ewert, S., Kollmeier, B. (2018). Adapting hearing devices to the individual ear acoustics: Database and target response correction functions for various device styles. Trends in Hearing, 22, 233121651877931. https://doi.org/10.1177/2331216518779313
Google Scholar | SAGE Journals | ISI Dobie, R., Wilson, M. (1996). A comparison of t test, F test, and coherence methods of detecting steady-state auditory-evoked potentials, distortion-product otoacoustic emissions, or other sinusoids. The Journal of the Acoustical Society of America, 100, 2236–2246. https://doi.org/:10.1121/1.417933
Google Scholar | Crossref | Medline | ISI Gransier, R., van Wieringen, A., Wouters, J. (2017). Binaural interaction effects of 30-50 Hz auditory steady state responses. Ear and Hearing, 38, e305–e315. https://doi.org/10.1097/AUD.0000000000000429
Google Scholar | Crossref | Medline Hatton, J., Stapells, D. (2010). The efficiency of the single- versus multiple-stimulus auditory steady state responses in infants. Ear and Hearing, 32, 349–357. https://doi.org/10.1097/AUD.0b013e3181ff352c
Google Scholar | Crossref Hatton, J., Stapells, D. (2013). Monotic versus dichotic multiple-stimulus auditory steady state responses in young children. Ear and Hearing, 34, 680–682. https://doi.org/10.1097/AUD.0b013e31828d2c1d
Google Scholar | Crossref | Medline Holube, I., Fredelake, S., Vlaming, M., Kollmeier, B. (2010). Development and analysis of an international speech test signal (ISTS). International journal of Audiology, 49, 891–903. https://doi.org/10.3109/14992027.2010.506889
Google Scholar | Crossref | Medline | ISI John, M., Dimitrijevic, A., Picton, T. (2001). Weighted averaging of steady-state responses. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 112, 555–562. https://doi.org/10.1016/S1388-2457(01)00456-4
Google Scholar | Crossref | Medline John, M., Lins, O., Boucher, B. L., Picton, T. (1998). Multiple auditory steady-state responses (master): Stimulus and recording parameters. Audiology: Official Organ of the International Society of Audiology, 37, 59–82. https://doi.org/10.3109/00206099809072962
Google Scholar | Crossref | Medline Kates, J. (2008). Digital hearing aids. Plural Publishing, Incorporated.
Google Scholar Kuznetsova, A., Brockhoff, P., Christensen, R. (2015). lmertest: Tests in linear mixed effects models (R Package Version 2). R Foundation for Statistical Computing. https://doi.org/10.18637/jss.v082.i13
Google Scholar Laugesen, S., Rieck, J., Elberling, C., Dau, T., Harte, J. (2018). On the cost of introducing speech-like properties to a stimulus for auditory steady-state response measurements. Trends in Hearing, 22, 233121651878930. https://doi.org/10.1177/2331216518789302
Google Scholar | SAGE Journals | ISI Lins, O., Picton, P., Picton, T., Champagne, S., Durieux-Smith, A. (1995). Auditory steady-state responses to tones amplitude-modulated at 80-110 Hz. The Journal of the Acoustical Society of America, 97, 3051–3063. https://doi.org/10.1121/1.411869
Google Scholar | Crossref | Medline Maki, A., Kawase, T., Kobayashi, T. (2009). Effects of contralateral noise on 40-hz and 80-hz auditory steady-state responses. Ear and Hearing, 30, 584–589. https://doi.org/10.1097/AUD.0b013e3181acfb57
Google Scholar | Crossref | Medline Mehta, K., Mahon, M., Watkin, P., Marriage, J., Vickers, D. (2019). A qualitative review of parents’ perspectives on the value of caep recording in influencing their acceptance of hearing devices for their child. International Journal of Audiology, 58, 1–7. https://doi.org/10.1080/14992027.2019.1592250
Google Scholar | Crossref | Medline Meier, S., Narabayashi, O., Probst, R., Schmuziger, N. (2004). Comparison of currently available devices designed for newborn hearing screening using automated auditory brainstem and/or otoacoustic emission measurements. International Journal of Pediatric Otorhinolaryngology, 68(7), 927–934. https://doi.org/10.1016/j.ijporl.2004.02.008
Google Scholar | Crossref | Medline Michel, F., Jørgensen, K. F. (2017). Comparison of threshold estimation in infants with hearing loss or normal hearing using auditory steady-state response evoked by narrow band CE-chirps and auditory brainstem response evoked by tone pips. International Journal of Audiology, 56(2), 99–105. https://doi.org/10.1080/14992027.2016.1234719
Google Scholar | Crossref | Medline Mühler, R., Petzke, A., Verhey, J. L. (2018). Simultaneous acquisition of 40- and 80-hz auditory steady-state responses for a direct comparison of response amplitude, residual noise and signal-to-noise ratio. European Archives of Oto-Rhino-Laryngology, 275, 2601–2605. DOI: 10.1007/s00405-018-5097-y
Google Scholar | Crossref | Medline Oostenveld, R., Fries, P., Maris, E., Schoffelen, J. M. (2011). Fieldtrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011, 156869. https://doi.org/10.1155/2011/156869
Google Scholar | Crossref | Medline | ISI Riedel, H., Kollmeier, B. (2002). Auditory brain stem responses evoked by lateralized clicks: Is lateralization extracted in the human brain stem? Hearing Research, 163, 12–26. https://doi.org/10.1016/S0378-5955(01)00362-8
Google Scholar | Crossref | Medline | ISI Rodrigues, G., Lewis, D. (2013). Establishing auditory steady-state response thresholds to narrow band CE-chirps® in full-term neonates. International Journal of Pediatric Otorhinolaryngology 78. https://doi.org/10.1016/j.ijporl.2013.11.012
Google Scholar Ross, B., Herdman, A., Pantev, C. (2006). Right hemispheric laterality of human 40 Hz auditory steady-state responses. Cerebral cortex (New York, N.Y.: 1991), 15, 2029–2039. https://doi.org/10.1093/cercor/bhi078
Google Scholar | Crossref Saupe, K., Schröger, E., Andersen, S., Müller, M. (2009). Neural mechanisms of intermodal sustained selective attention with concurrently presented auditory and visual stimuli. Frontiers in Human Neuroscience, 3, 58. https://doi.org/10.3389/neuro.09.058.2009
Google Scholar | Crossref | Medline | ISI Sininger, Y. S., Hunter, L. L., Hayes, D., Roush, P. A., Uhler, K. M. (2018). Evaluation of speed and accuracy of next-generation auditory steady state response and auditory brainstem response audiometry in children with normal hearing and hearing loss. Ear and Hearing, 39(6), 1207–1223. DOI: 10.1097/AUD.0000000000000580
Google Scholar | Crossref | Medline Vercammen, C., van Wieringen, A., Wouters, J., Francart, T. (2017). Desynchronisation of auditory steady-state responses related to changes in interaural phase differences: An objective measure of binaural hearing. International Journal of Audiology, 56, 464–471. https://doi.org/10.1080/14992027.2017.1288304
Google Scholar | Crossref | Medline Zenker-Castro, F., Barajas de Prat, J. J. (2008). Part a—The roll of auditory steady-state responses in fitting hearing aids. In Rance, G. (Ed.), The auditory steady-state response: Generation, recording, and clinical application, chapter 13. Part A (pp. 241–258). Plural Publishing.
Google Scholar Zhang, F., Boettcher, F. (2008). Effects of interaural time and level differences on the binaural interaction component of the 80 Hz auditory steady-state response. Journal of the American Academy of Audiology, 19, 82–94. https://doi.org/10.3766/jaaa.19.1.7
Google Scholar | Crossref | Medline

Comments (0)

No login
gif