A self-aligning end-effector robot for individual joint training of the human arm

1. Prange, GB, Jannink, MJA, Groothuis-Oudshoorn, CGM, et al. Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. Jrrd 2006; 43: 171–184.
Google Scholar | Crossref | Medline2. Kwakkel, G, Kollen, BJ, Krebs, HI. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehab Neural Repair 2008; 22: 111–121.
Google Scholar | SAGE Journals | ISI3. Lo, AC, Guarino, PD, Richards, LG, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med 2010; 362: 1772–1783.
Google Scholar | Crossref | Medline | ISI4. Milot, M-H, Spencer, SJ, Chan, V, et al. Crossover pilot study evaluating the functional outcomes of two different types of robotic movement training in chronic stroke survivors using the arm exoskeleton bones. J Neuroeng Rehab 2013; 10: 112.
Google Scholar | Crossref | Medline | ISI5. Schaefer, SY, Patterson, CB, Lang, CE. Transfer of training between distinct motor tasks after stroke: implications for task-specific approaches to upper-extremity neurorehabilitation. Neurorehab Neural Repair 2013; 27: 602–612.
Google Scholar | SAGE Journals | ISI6. Fluet, GG, Merians, AS, Qiu, Q, et al. Comparing integrated training of the hand and arm with isolated training of the same effectors in persons with stroke using haptically rendered virtual environments, a randomized clinical trial. J Neuroeng Rehab 2014; 11: 126.
Google Scholar | Crossref | Medline7. Klein, J, Spencer, SJ, Reinkensmeyer, DJ. Breaking it down is better: haptic decomposition of complex movements aids in robot-assisted motor learning. IEEE Trans Neural Syst Rehab Eng 2012; 20: 268–275.
Google Scholar | Crossref | Medline | ISI8. Nef, T, Guidali, M, Riener, R. Armin iii–arm therapy exoskeleton with an ergonomic shoulder actuation. Appl Bionics Biomech 2009; 6: 127–142.
Google Scholar | Crossref9. Sanchez, RJ, Wolbrecht, E, et al. RSmithJLiuSRao. A pneumatic robot for re-training arm movement after stroke: rationale and mechanical design. In: 9th international conference on rehabilitation robotics. New York: IEEE, 2005, pp.500–504.
Google Scholar10. Klein, J, Spencer, SJ, Allington, J, et al. Biomimetic orthosis for the neurorehabilitation of the elbow and shoulder (bones). In: 2008 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics. New York: IEEE, 2008, pp.535–541.
Google Scholar11. Trigili, E, Crea, S, , et al. Design and experimental characterization of a shoulder-elbow exoskeleton with compliant joints for post-stroke rehabilitation. IEEE/ASME Trans Mechatron 2019; 24: 1485–1496.
Google Scholar | Crossref12. Yves, Z, Alessandro, F, Robert, R, et al. Anyexo: a versatile and dynamic upper-limb rehabilitation robot. IEEE Rob Autom Lett 2019; 4: 3649–3656.
Google Scholar | Crossref13. Bongsu, K, Deshpande, AD. An upper-body rehabilitation exoskeleton harmony with an anatomical shoulder mechanism: design, modeling, control, and performance evaluation. Int J Rob Res 2017; 36: 414–435.
Google Scholar | SAGE Journals14. Krebs, HI, Hogan, N, Aisen, ML, et al. Robot-aided neurorehabilitation. IEEE Trans Rehab Eng 1998; 6: 75–87.
Google Scholar | Crossref | Medline15. Campolo, D, Tommasino, P, Gamage, K, et al. Lorenzo masia. H-man: a planar, h-shape cabled differential robotic manipulandum for experiments on human motor control. J Neurosci Meth 2014; 235: 285–297.
Google Scholar | Crossref | Medline16. Che, FY, Alejandro, M-C, Roger, G, et al. IEEE/RSJ international conference on intelligent robots and systems. New York: IEEE, 2009, pp. 4080–4085.
Google Scholar17. Rosati, G, Gallina, P, Masiero, S. Design, implementation and clinical tests of a wire-based robot for neurorehabilitation. IEEE Trans Neural Syst Rehab Eng 2007; 15: 560–569.
Google Scholar | Crossref | Medline | ISI18. Jarrassé, N, Morel, G. Connecting a human limb to an exoskeleton. IEEE Trans Robot 2012; 28: 697–709.
Google Scholar | Crossref | ISI19. Christensen, S, Bai, S. Kinematic analysis and design of a novel shoulder exoskeleton using a double parallelogram linkage. J Mech Rob 2018; 10: 041008.
Google Scholar20. Hunt, J, Lee, H, Artemiadis, P. A novel shoulder exoskeleton robot using parallel actuation and a passive slip interface. J Mech Rob 2017; 9: 011002.
Google Scholar | Medline21. Cortés, C, Ardanza, A, Molina-Rueda, F, et al. Upper limb posture estimation in robotic and virtual reality-based rehabilitation. BioMed Res Int 2014.
Google Scholar | Crossref22. Cirstea, MC, Levin, MF. Compensatory strategies for reaching in stroke. Brain 2000; 123: 940–953.
Google Scholar | Crossref | Medline | ISI23. Platz, T. Impairment-oriented training (iot)–scientific concept and evidence-based treatment strategies. Restorai Neurol Neurosci 2004; 22: 301–315.
Google Scholar | Medline | ISI24. Thomas, P, Stefanie, v. K, Jan, M, et al. Best conventional therapy versus modular impairment-oriented training for arm paresis after stroke: a single-blind, multicenter randomized controlled trial. Neurorehabil Neural Repair 2009; 23: 706–716.
Google Scholar | SAGE Journals

留言 (0)

沒有登入
gif