1.
Marchand, RP, Culleton, R, Maeno, Y, Quang, NT, Nakazawa, S. Co-infections of Plasmodium knowlesi, P. falciparum, and P. vivax among humans and Anopheles dirus mosquitoes, Southern Vietnam. Emerg Infect Dis. 2011;17(7):1232–1239. doi:10.3201/eid1707.101551
Google Scholar |
Crossref |
Medline2.
Sullivan, D . Uncertainty in mapping malaria epidemiology: implications for control. Epidemiol Rev. 2010;32(1):175–187. doi:10.1093/epirev/mxq013
Google Scholar |
Crossref |
Medline3.
World Health Organization . Global Status Report on Road Safety 2018; 2018.
Google Scholar4.
Autino, B, Noris, A, Russo, R, Castelli, R. Epidemiology of malaria in endemic areas. Mediterr J Hematol Infect Dis. 2012;4(1):e2012060. doi:10.4084/MJHID.2012.060
Google Scholar |
Crossref |
Medline5.
Ugandan Ministry of Health . The Uganda Malaria Reduction Strategic Plan 2014-2020, Minist Heal Ugandan ; 2014.
Google Scholar6.
FY 2020 Uganda Malaria Operational Plan , Accessed September 10, 2020.
www.pmi.gov Google Scholar7.
D. for International Development . DFID Uganda Operational Plan 2014; 2014.
Google Scholar8.
White, NJ, Pukrittayakamee, S, Hien, TT, Faiz, MA, Mokuolu, OA, Dondorp, AM. Malaria. Lancet. 2014;383(9918):723–735. doi:10.1016/S0140-6736(13)60024-0
Google Scholar |
Crossref |
Medline |
ISI9.
Maccormick, IJC, Beare, NAV, Taylor, TE, et al. Cerebral malaria in children: using the retina to study the brain. Brain. 2014;137(pt 8):2119–2142. doi:10.1093/brain/awu001
Google Scholar |
Crossref |
Medline10.
Bondi, FS. The incidence and outcome of neurological abnormalities in childhood cerebral malaria: a long-term follow-up of 62 survivors. Trans R Soc Trop Med Hyg. 1992;86(1):17–19. doi:10.1016/0035-9203(92)90420-h
Google Scholar |
Crossref |
Medline11.
Guo, J, Waknine-Grinberg, JH, Mitchell, AJ, Barenholz, Y, Golenser, J. Reduction of experimental cerebral malaria and its related proinflammatory responses by the novel liposome-based β-methasone nanodrug, Biomed Res Int. 2014;2014:292471. doi:10.1155/2014/292471
Google Scholar |
Crossref |
Medline12.
Khandare, AV, Bobade, D, Deval, M, Patil, T, Saha, B, Prakash, D. Expression of negative immune regulatory molecules, pro-inflammatory chemokine and cytokines in immunopathology of ECM developing mice. Acta Trop. 2017;172:58–63. doi:10.1016/j.actatropica.2017.04.025
Google Scholar |
Crossref |
Medline13.
Scholar, E . Chloroquine, in: XPharm Compr. Pharmacol Ref. 2007. doi:10.1016/B978-008055232-3.61444-8
Google Scholar14.
White, NJ . Qinghaosu (artemisinin): the price of success. Science. 2008;80. doi:10.1126/science.1155165
Google Scholar15.
Wellems, TE, Plowe, CV. Chloroquine-resistant malaria. J Infect Dis. 2001;184(6):770–776. doi:10.1086/322858
Google Scholar |
Crossref |
Medline16.
Shah, NK, Dhillon, GPS, Dash, AP, Arora, U, Meshnick, UR, Valecha, N. Antimalarial drug resistance of Plasmodium falciparum in India: changes over time and space. Lancet Infect Dis. 2011;11(1):57–64. doi:10.1016/S1473-3099(10)70214-0
Google Scholar |
Crossref |
Medline17.
Rocamora, F, Zhu, L, Liong, KY, et al. Oxidative stress and protein damage responses mediate artemisinin resistance in malaria parasites. PLoS Pathog. 2018;14(3):e1006930. doi:10.1371/journal.ppat.1006930
Google Scholar |
Crossref |
Medline18.
Woodrow, CJ, White, NJ. The clinical impact of artemisinin resistance in Southeast Asia and the potential for future spread. FEMS Microbiol Rev. 2017.41(1):34–48. doi:10.1093/femsre/fuw037
Google Scholar |
Crossref |
Medline19.
Coria-Téllez, AV, Montalvo-Gónzalez, E, Yahia, EM, Obledo-Vázquez, EN. Annona muricata: a comprehensive review on its traditional medicinal uses, phytochemicals, pharmacological activities, mechanisms of action and toxicity. Arab J Chem. 2018;11(5):662–691. doi:10.1016/j.arabjc.2016.01.004
Google Scholar |
Crossref20.
Foong, CP, Hamid, RA. Evaluation of anti-infammatory activities of ethanolic extract of Annona muricata leaves. Brazilian J Pharmacogn. 2012;22:1301–1307. doi:10.1590/S0102-695X2012005000096
Google Scholar |
Crossref21.
Ahalya, B, Shankar, KR, Kiranmayi, GVN. Exploration of anti-hyperglycemic and hypolipidemic activities of ethanolic extract of Annona muricata bark in alloxan induced diabetic rats. Int J Pharm Sci Rev Res. 2014;25(2):21–27.
Google Scholar22.
Yajid, AI, Ab Rahman, HS, Wong, MPK, Wan Zain, WZ. Potential benefits of Annona muricata in combating cancer: a review. Malays J Med Sci. 2018;25(1):5–15. doi:10.21315/mjms2018.25.1.2
Google Scholar |
Medline23.
Omara, T, Kiprop, AK, Ramkat, RC, et al. Medicinal plants used in traditional management of cancer in Uganda: a review of ethnobotanical surveys, phytochemistry, and anticancer studies. Evid Based Complement Alternat Med. 2020;2020:3529081. doi:10.1155/2020/3529081
Google Scholar |
Crossref24.
Tan, LTH, Lee, LH, Yin, WF, et al. Traditional uses, phytochemistry, and bioactivities of Cananga odorata (ylang-ylang), evidence-based complement. Altern Med. 2015;2015:1–30. doi:10.1155/2015/896314
Google Scholar25.
Somsak, V, Polwiang, N, Chachiyo, S. In Vivo antimalarial activity of Annona muricata leaf extract in mice infected with Plasmodium berghei. J Pathog. 2016;2016:3264070. doi:10.1155/2016/3264070
Google Scholar |
Crossref |
Medline26.
Mohd Abd Razak, MR, Afzan, A, Ali, R, et al. Effect of selected local medicinal plants on the asexual blood stage of chloroquine resistant Plasmodium falciparum. BMC Complement Altern Med. 2014;14:492. doi:10.1186/1472-6882-14-492
Google Scholar |
Crossref |
Medline27.
Khaya grandifoliola C.DC: A potential source of active ingredients with pharmacological activities . 2019. Accessed September 10, 2020.
https://www.longdom.org/proceedings/khaya-grandifoliola-cdc-a-potential-source-of-active-ingredients-with-pharmacological-activities-46549.html Google Scholar28.
Khaya grandifoliola (PROTA)—PlantUse English . 2008. Accessed September 10, 2020.
https://uses.plantnet-project.org/en/Khaya_grandifoliola_(PROTA)
Google Scholar29.
Agbedahunsi, JM, Elujoba, AA, Makinde, JM, Oduda, AMJ. Antimalarial activity of Khaya grandifoliola stem-bark. Pharm Biol. 1998;36(1):8–12. doi:10.1076/phbi.36.1.8.4613
Google Scholar |
Crossref30.
Basir, R, Rahiman, SSF, Hasballah, K, et al. Plasmodium berghei ANKA infection in ICR mice as a model of cerebral malaria. Iran J Parasitol. 2012;7(4):62–74.
Google Scholar |
Medline31.
Sankeshwari, R, Ankola, A, Bhat, K, Hullatti, K. Soxhlet versus cold maceration: which method gives better antimicrobial activity to licorice extract against Streptococcus mutans? J Sci Soc. 2018;45(2):67.
https://doi.org/10.4103/jss.jss_27_18 Google Scholar32.
Evans, W . Trease and Evans’ pharmacognosy, 13th ed. Bailliere Tindall; 1989.
Google Scholar33.
Charan, J, Kantharia, N. How to calculate sample size in animal studies? J Pharmacol Pharmacother. 2013;4(4):303. doi:10.4103/0976-500X.119726
Google Scholar |
Crossref |
Medline34.
Braca, A, De Tommasi, N, Di Bari, L, Pizza, C, Politi, M, Morelli, I. Antioxidant principles from Bauhinia tarapotensis. J Nat Prod. 2001;64(7):892–895. doi:10.1021/np0100845
Google Scholar |
Crossref |
Medline35.
Hope, O, Ibrahim, OA, Saheed, LM, Josiah, IE, Ismaila, IO. Chloroform seed extract of Buchholzia coriacea (Capparaceae) ameliorates complete Freund’s adjuvant-induced chronic inflammation in rat 1 2 2 3 2 L’extrait de graines de chloroforme de Buchholzia coriacea (Capparaceae) améliore complètement l’inflammation, West African J Pharm. 2018;29:95–104.
Google Scholar36.
Randhawa, MA . Calculation of LD50 values from the method of Miller and Tainter, 1944. J Ayub Med Coll Abbottabad. 2009;21(3):184–185. Accessed September 19, 2020.
http://europepmc.org/article/MED/20929045 Google Scholar37.
Virginia Tech . SOP: Blood Collection in the Mouse. Tail Vein; 2017.
Google Scholar38.
Yang, H, Wu, C, Liu, F, et al. Blood collection through subclavian vein puncture in mice. J Vis Exp. 2019:147. doi:10.3791/59556
Google Scholar39.
(PDF) Etude De Toxicité Aiguë De L’extrait Total Aqueux De Phyllanthus Amarus (Schum & Thonn) Chez Les Souris. 2005. Accessed September 28, 2020.
https://www.researchgate.net/publication/268982878_ETUDE_DE_TOXICITE_AIGUE_DE_L’EXTRAIT_TOTAL_AQUEUX_DE_PHYLLANTHUS_AMARUS_SCHUM_THONN_CHEZ_LES_SOURIS Google Scholar40.
Boyom, FF, Fokou, PVT, Yamthe, LRT, et al. Potent antiplasmodial extracts from Cameroonian Annonaceae. J Ethnopharmacol. 2011;134(3):717–724. doi:10.1016/j.jep.2011.01.020
Google Scholar |
Crossref |
Medline41.
Gimenez, F, Barraud de Lagerie, S, Fernandez, C, Pino, P, Mazier, D. Tumor necrosis factor alpha in the pathogenesis of cerebral malaria. Cell Mol Life Sci. 2003;60(8):1623–1635. doi:10.1007/s00018-003-2347-x
Google Scholar |
Crossref |
Medline42.
Omer, FM, Kurtzhals, JA, Riley, EM. Maintaining the immunological balance in parasitic infections: a role for TGF-beta? Parasitol Today. 2000;16(1):18–23. doi:10.1016/s0169-4758(99)01562-8
Google Scholar |
Crossref |
Medline43.
Leão, L, Puty, B, Dolabela, MF, et al. Association of cerebral malaria and TNF-α levels: a systematic review. BMC Infect Dis. 2020;20(1):442. doi:10.1186/s12879-020-05107-2
Google Scholar |
Crossref |
Medline44.
Raza, A, Khan, MS, Ghanchi, NK, Raheem, A, Beg, MA, Tumour necrosis factor, interleukin-6 and interleukin-10 are possibly involved in Plasmodium vivax-associated thrombocytopaenia in southern Pakistani population. Malar J. 2014;13:323. doi:10.1186/1475-2875-13-323
Google Scholar |
Crossref |
Medline45.
Heits, F, Stahl, M, Ludwig, D, Stange, EF, Jelkmann, W. Elevated serum thrombopoietin and interleukin-6 concentrations in thrombocytosis associated with inflammatory bowel disease. J Interferon Cytokine Res. 1999;19(7):757–760. doi:10.1089/107999099313604
Google Scholar |
Crossref |
Medline46.
Veldhuis, GJ, Willemse, PHB, Sleijfer, DT, et al. Toxicity and efficacy of escalating dosages of recombinant human interleukin-6 after chemotherapy in patients with breast cancer or non-small-cell lung cancer. J Clin Oncol. 1995;13(10):2585–2593. doi:10.1200/JCO.1995.13.10.2585
Google Scholar |
Crossref |
Medline47.
Grau, GE, Frei, K, Piguet, PF, et al. Interleukin 6 production in experimental cerebral malaria: modulation by anticytokine antibodies and possible role in hypergammaglobulinemia. J Exp Med. 1990;172(5):1505–1508. doi:10.1084/jem.172.5.1505
Google Scholar |
Crossref |
Medline48.
Nmorsi, O, Isaac, C, Ukwandu, N, Ohaneme, B. Pro–and anti–inflammatory cytokines profiles among Nigerian children infected with Plasmodium falciparum malaria. Asian Pac J Trop Med. 2010;3(1):41–44. doi:10.1016/S1995-7645(10)60029-6
Google Scholar |
Crossref49.
Prakash, D, Fesel, C, Jain, R, Cazenave, PA, Mishra, GC, Pied, S. Clusters of cytokines determine malaria severity in Plasmodium falciparum-infected patients from endemic areas of Central India. J Infect Dis. 2006;194(2):198–207. doi:10.1086/504720
Google Scholar |
Crossref |
Medline50.
Becker, K, Tilley, L, Vennerstrom, JL, Roberts, D, Rogerson, S, Ginsburg, H. Oxidative stress in malaria parasite-infected erythrocytes: host–parasite interactions. Int J Parasitol. 2004;34(2):163–189. doi:10.1016/j.ijpara.2003.09.011
Google Scholar |
Crossref |
Medline51.
Kremsner, P, Greve, B, Lell, B, Luckner, D, Schmid, D. Malarial anaemia in African children associated with high oxygen-radical production. Lancet. 2000;355(9197):40–41. doi:10.1016/S0140-6736(99)04761-3
Google Scholar |
Crossref |
Medline52.
Guha, M, Kumar, S, Choubey, V, Maity, P, Bandyopadhyay, U. Apoptosis in liver during malaria: role of oxidative stress and implication of mitochondrial pathway. FASEB J. 2006;20(8):1224–1226. doi:10.1096/fj.05-5338fje
Google Scholar |
Crossref |
Medline |
ISI53.
Zhang, S, Chen, H, Gerhard, GS. Heme synthesis increases artemisinin-induced radical formation and cytotoxicity that can be suppressed by superoxide scavengers. Chem Biol Interact. 2010;186(1):30–35. doi:10.1016/j.cbi.2010.03.021
Google Scholar |
Crossref |
Medline54.
Eisenhut, M . The evidence for a role of vasospasm in the pathogenesis of cerebral malaria. Malar J. 2015;14:405. doi:10.1186/s12936-015-0928-4
Google Scholar |
Crossref |
Medline55.
Arrey Tarkang, P, Nwachiban Atchan, AP, Kuiate, JR, Okalebo, FA, Guantai, AN, Agbor, GA. Antioxidant potential of a polyherbal antimalarial as an indicator of its therapeutic value. Adv Pharmacol Sci. 2013;2013:678458. doi:10.1155/2013/678458.
Google Scholar |
Medline56.
Alitonou, G, Tchobo, F, Sessou, P, Avlessi, F. Chemical composition, antiradical and antiinflammatory activities of four Annonaceae from Benin. Int J Pharm Chem Biol Sci. 2011;3:914–923.
Google Scholar57.
Laksmitawati
Comments (0)