1.
Rawlings, ND, Barrett, AJ, Thomas, PD, Huang, X, Bateman, A, Finn, RD. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018;46(D1):D624–32. doi:
10.1093/nar/gkx1134.
Google Scholar |
Crossref2.
Yong, VW, Power, C, Forsyth, P, Edwards, DR. Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci. 2001;2(7):502–11. doi:
10.1038/35081571.
Google Scholar |
Crossref3.
Klein, T, Bischoff, R. Physiology and pathophysiology of matrix metalloproteases. Amino Acids. 2011;41(2):271–90. doi:
10.1007/s00726-010-0689-x.
Google Scholar |
Crossref4.
Mittal, R, Patel, AP, Debs, LH, Nguyen, D, Patel, K, Grati, M, Mittal, J, Yan, D, Chapagain, P, Liu, XZ. Intricate functions of matrix metalloproteinases in physiological and pathological conditions. J Cell Physiol. 2016; 231(12):2599–621. doi:
10.1002/jcp.25430.
Google Scholar |
Crossref5.
Edwards, DR, Handsley, MM, Pennington, CJ. The ADAM metalloproteinases. Mol Aspects Med. 2008; 29(5):258–89. doi:
10.1016/j.mam.2008.08.001.
Google Scholar |
Crossref6.
Kelwick, R, Desanlis, I, Wheeler, GN, Edwards, DR. The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family. Genome Biol. 2015; 16(1):113. doi:
10.1186/s13059-015-0676-3.
Google Scholar |
Crossref |
Medline7.
Cal, S, López-Otín, C. ADAMTS proteases and cancer. Matrix Biol. 2015;44–6:77–85. doi:
10.1016/j.matbio.2015.01.013.
Google Scholar |
Crossref8.
Apte, SS. ADAMTS proteins: concepts, challenges, and prospects. Methods Mol Biol. 2020;2043:1–12. doi:
10.1007/978-1-4939-9698-8_1.
Google Scholar |
Crossref |
Medline9.
Mott, JD, Werb, Z. Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol. 2004; 16(5):558–64. doi:
10.1016/j.ceb.2004.07.010.
Google Scholar |
Crossref10.
Jabłońska-Trypuć, A, Matejczyk, M, Rosochacki, S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem. 2016;31(Suppl. 1):177–83. doi:
10.3109/14756366.2016.1161620.
Google Scholar |
Crossref11.
Nagase, H, Visse, R, Murphy, G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006;69(3):562–73. doi:
10.1016/j.cardiores.2005.12.002.
Google Scholar |
Crossref12.
Mullooly, M, McGowan, PM, Crown, J, Duffy, MJ. The ADAMs family of proteases as targets for the treatment of cancer. Cancer Biol Ther. 2016;17(8):870–80. doi:
10.1080/15384047.2016.1177684.
Google Scholar |
Crossref13.
Turk, V, Stoka, V, Vasiljeva, O, Renko, M, Sun, T, Turk, B, Turk, D. Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta. 2012;1824(1):68–88. doi:
10.1016/j.bbapap.2011.10.002.
Google Scholar |
Crossref |
Medline14.
Yadati, T, Houben, T, Bitorina, A, Shiri-Sverdlov, R. The ins and outs of cathepsins: physiological function and role in disease management. Cells. 2020;9(7):1679. doi:
10.3390/cells9071679.
Google Scholar |
Crossref15.
Turk, B. Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov. 2006;5(9): 785–99. doi:
10.1038/nrd2092.
Google Scholar |
Crossref16.
López-Otín, C, Overall, CM. Protease degradomics: a new challenge for proteomics. Nat Rev Mol Cell Biol. 2002;3(7):509–19. doi:
10.1038/nrm858.
Google Scholar |
Crossref17.
López-Otín, C, Bond, JS. Proteases: multifunctional enzymes in life and disease. J Biol Chem. 2008;283(45):30433–7. doi:
10.1074/jbc.R800035200.
Google Scholar |
Crossref18.
Quesada, V, Ordóñez, GR, Sánchez, LM, Puente, XS, López-Otín, C. The Degradome database: mammalian proteases and diseases of proteolysis. Nucleic Acids Res. 2009;37(Database issue):D239–43. doi:
10.1093/nar/gkn570.
Google Scholar |
Crossref19.
Turk, B, Turk, D, Turk, V. Protease signalling: the cutting edge. EMBO J. 2012;31(7):1630–43. doi:
10.1038/emboj.2012.42.
Google Scholar |
Crossref20.
Bond, JS. Proteases: history, discovery, and roles in health and disease. J Biol Chem. 2019;294(5):1643–51. doi:
10.1074/jbc.TM118.004156.
Google Scholar |
Crossref21.
Jones, DL, Wagers, AJ. No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol. 2008;9(1):11–21. doi:
10.1038/nrm2319.
Google Scholar |
Crossref |
Medline22.
Morrison, SJ, Spradling, AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell. 2008;132(4):598–611. doi:
10.1016/j.cell.2008.01.038.
Google Scholar |
Crossref |
Medline23.
Kessenbrock, K, Wang, CY, Werb, Z. Matrix metalloproteinases in stem cell regulation and cancer. Matrix Biol. 2015;44–6:184–90. doi:
10.1016/j.matbio.2015.01.022.
Google Scholar |
Crossref24.
Tay, J, Levesque, JP, Winkler, IG. Cellular players of hematopoietic stem cell mobilization in the bone marrow niche. Int J Hematol. 2017;105(2):129–40. doi:
10.1007/s12185-016-2162-4.
Google Scholar |
Crossref25.
Man, Y, Yao, X, Yang, T, Wang, Y. Hematopoietic stem cell niche during homeostasis, malignancy, and bone marrow transplantation. Front Cell Dev Biol. 2021;9:621214. doi:
10.3389/fcell.2021.621214.
Google Scholar |
Crossref26.
Saw, S, Weiss, A, Khokha, R, Waterhouse, PD. Metalloproteases: on the watch in the hematopoietic niche. Trends Immunol. 2019;40(11):1053–70. doi:
10.1016/j.it.2019.09.006.
Google Scholar |
Crossref27.
Maurer, A, Klein, G, Staudt, ND. Assessment of proteolytic activities in the bone marrow microenvironment. Methods Mol Biol. 2019;2017:149–63. doi:
10.1007/978-1-4939-9574-5_12.
Google Scholar |
Crossref28.
Staudt, ND, Aicher, WK, Kalbacher, H, Stevanovic, S, Carmona, AK, Bogyo, M, Klein, G. Cathepsin X is secreted by human osteoblasts, digests CXCL-12 and impairs adhesion of hematopoietic stem and progenitor cells to osteoblasts. Haematologica. 2010;95(9):1452–60. doi:
10.3324/haematol.2009.018671.
Google Scholar |
Crossref29.
Luo, M, Li, JF, Yang, Q, Zhang, K, Wang, ZW, Zheng, S, Zhou, JJ. Stem cell quiescence and its clinical relevance. World J Stem Cells. 2020;12(11):1307–26. doi:
10.4252/wjsc.v12.i11.1307.
Google Scholar |
Crossref30.
Steinl, C, Essl, M, Schreiber, TD, Geiger, K, Prokop, L, Stevanović, S, Pötz, O, Abele, H, Wessels, JT, Aicher, WK, Klein, G. Release of matrix metalloproteinase-8 during physiological trafficking and induced mobilization of human hematopoietic stem cells. Stem Cells Dev. 2013;22(9):1307–18. doi:
10.1089/scd.2012.0063.
Google Scholar |
Crossref31.
Jin, F, Zhai, Q, Qiu, L, Meng, H, Zou, D, Wang, Y, Li, Q, Yu, Z, Han, J, Li, Q, Zhou, B. Degradation of BM SDF-1 by MMP-9: the role in G-CSF-induced hematopoietic stem/progenitor cell mobilization. Bone Marrow Transplant. 2008;42(9):581–8. doi:
10.1038/bmt.2008.222.
Google Scholar |
Crossref32.
Theodore, LN, Hagedorn, EJ, Cortes, M, Natsuhara, K, Liu, SY, Perlin, JR, Yang, S, Daily, ML, Zon, LI, North, TE. Distinct roles for matrix metalloproteinases 2 and 9 in embryonic hematopoietic stem cell emergence, migration, and niche colonization. Stem Cell Reports. 2017;8(5):1226–41. doi:
10.1016/j.stemcr.2017.03.016.
Google Scholar |
Crossref33.
Staudt, ND, Maurer, A, Spring, B, Kalbacher, H, Aicher, WK, Klein, G. Processing of CXCL12 by different osteoblast-secreted cathepsins. Stem Cells Dev. 2012;21(11):1924–35. doi:
10.1089/scd.2011.0307.
Google Scholar |
Crossref34.
Kollet, O, Dar, A, Shivtiel, S, Kalinkovich, A, Lapid, K, Sztainberg, Y, Tesio, M, Samstein, RM, Goichberg, P, Spiegel, A, Elson, A, Lapidot, T. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med. 2006;12(6):657–64. doi:
10.1038/nm1417.
Google Scholar |
Crossref |
Medline35.
Coussens, LM, Fingleton, B, Matrisian, LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science. 2002;295(5564):2387–92. doi:
10.1126/science.1067100.
Google Scholar |
Crossref36.
Lah, TT, Obermajer, N, Alonso, MBD, Kos, J. Cysteine cathepsins and cystatins as cancer biomarkers. In: Edwards, D, Høyer-Hansen, G, Blasi, F, Sloane, BF editors. The cancer degradome: proteases and cancer biology. New York: Springer; 2008. p. 587–625. doi:
10.1007/978-0-387-69057-5_29.
Google Scholar |
Crossref37.
Breznik, B, Mitrović, AT, Lah, T, Kos, J. Cystatins in cancer progression: more than just cathepsin inhibitors. Biochimie. 2019;166:233–50. doi:
10.1016/j.biochi.2019.05.002.
Google Scholar |
Crossref38.
Mason, SD, Joyce, JA. Proteolytic networks in cancer. Trends Cell Biol. 2011;21(4):228–37. doi:
10.1016/j.tcb.2010.12.002.
Google Scholar |
Crossref39.
Vizovisek, M, Ristanovic, D, Menghini, S, Christiansen, MG, Schuerle, S. The tumor proteolytic landscape: a challenging frontier in cancer diagnosis and therapy. Int J Mol Sci. 2021;22(5):2514. doi:
10.3390/ijms22052514.
Google Scholar |
Crossref40.
Lah, TT, Durán Alonso, MB, Van Noorden, CJ. Antiprotease therapy in cancer: hot or not? Expert Opin Biol Ther. 2006;6(3):257–79. doi:
10.1517/14712598.6.3.257.
Google Scholar |
Crossref41.
Rudzińska, M, Parodi, A, Soond, SM, Vinarov, AZ, Korolev, DO, Morozov, AO, Daglioglu, C, Tutar, Y, Zamyatnin, AA The role of cysteine cathepsins in cancer progression and drug resistance. Int J Mol Sci. 2019;20(14):3602. doi:
10.3390/ijms20143602.
Google Scholar |
Crossref42.
Roy, R, Morad, G, Jedinak, A, Moses, MA. Metalloproteinases and their roles in human cancer. Anat Rec (Hoboken). 2020;303(6):1557–72. doi:
10.1002/ar.24188.
Google Scholar |
Crossref43.
López-Otín, C, Matrisian, LM. Emerging roles of proteases in tumour suppression. Nat Rev Cancer. 2007;7(10):800–8. doi:
10.1038/nrc2228.
Google Scholar |
Crossref44.
López-Otín, C, Palavalli, LH, Samuels, Y. Protective roles of matrix metalloproteinases: from mouse models to human cancer. Cell Cycle. 2009;8(22):3657–62. doi:
10.4161/cc.8.22.9956.
Google Scholar |
Crossref45.
Noël, A, Gutiérrez-Fernández, A, Sounni, NE, Behrendt, N, Maquoi, E, Lund, IK, Cal, S, Hoyer-Hansen, G, López-Otín, C. New and paradoxical roles of matrix metalloproteinases in the tumor microenvironment. Front Pharmacol. 2012;3:140. doi:
10.3389/fphar.2012.00140.
Google Scholar |
Crossref |
Medline46.
Egeblad, M, Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2(3):161–74. doi:
10.1038/nrc745.
Google Scholar |
Crossref47.
Levicar, N, Strojnik, T, Kos, J, Dewey, RA, Pilkington, GJ, Lah, TT. Lysosomal enzymes, cathepsins in brain tumour invasion. J Neurooncol. 2002;58(1):21–32. doi:
10.1023/a:1015892911420.
Google Scholar |
Crossref48.
Filippou, PS, Karagiannis, GS, Musrap, N, Diamandis, EP. Kallikrein-related peptidases (KLKs) and the hallmarks of cancer. Crit Rev Clin Lab Sci. 2016;53(4):277–91. doi:
10.3109/10408363.2016.1154643.
Google Scholar |
Crossref49.
Breznik, B, Motaln, H, Lah Turnšek, T. Proteases and cytokines as mediators of interactions between cancer and stromal cells in tumours. Biol Chem. 2017;398(7):709–19. doi:
10.1515/hsz-2016-0283.
Google Scholar |
Crossref |
Medline50.
Kessenbrock, K, Plaks, V, Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52–67. doi:
10.1016/j.cell.2010.03.015.
Google Scholar |
Crossref |
Medline51.
Turunen, SP, Tatti-Bugaeva, O, Lehti, K. Membrane-type matrix metalloproteases as diverse effectors of cancer progression. Biochim Biophys Acta Mol Cell Res. 2017;1864(11, Pt. A):1974–88. doi:
10.1016/j.bbamcr.2017.04.002.
Google Scholar |
Crossref52.
Quintero-Fabián, S, Arreola, R, Becerril-Villanueva, E, Torres-Romero, JC, Arana-Argáez, V, Lara-Riegos, J, Ramírez-Camacho, MA, Alvarez-Sánchez, ME. Role of matrix metalloproteinases in angiogenesis and cancer. Front Oncol. 2019;9:1370. doi:
10.3389/fonc.2019.01370.
Google Scholar |
Crossref53.
Mochizuki, S, Okada, Y. ADAMs in cancer cell proliferation and progression. Cancer Sci. 20
Comments (0)