Four-Week Repeated Intravenous Dose Toxicity of Self-Assembled-Micelle Inhibitory RNA-Targeting Amphiregulin in Mice

1. Ford, LP, Toloue, MM. Delivery of RNAi mediators. Wiley Interdiscip Rev RNA. 2010;1(2):341-350.
Google Scholar | Crossref | Medline2. Li, J, Xue, S, Mao, Z-W. Nanoparticle delivery systems for siRNA-based therapeutics. J Mater Chem B. 2016;4(41):6620-6639.
Google Scholar | Crossref | Medline3. Fire, A, Xu, S, Montgomery, MK, Kostas, SA, Driver, SE, Mello, CC. Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans. Nature. 1998;391(6669):806-811.
Google Scholar | Crossref | Medline | ISI4. Mello, CC, Conte, D. Revealing the world of RNA interference. Nature. 2004;431(7006):338-342.
Google Scholar | Crossref | Medline5. Xue, HY, Liu, S, Wong, HL. Nanotoxicity: a key obstacle to clinical translation of siRNA-based nanomedicine. Nanomedicine. 2014;9(2):295-312.
Google Scholar | Crossref | Medline6. Zhou, Y, Zhang, C, Liang, W. Development of RNAi technology for targeted therapy–a track of siRNA based agents to RNAi therapeutics. J Contr Release. 2014;193:270-281.
Google Scholar | Crossref | Medline7. Weng, Y, Xiao, H, Zhang, J, Liang, X-J, Huang, Y. RNAi therapeutic and its innovative biotechnological evolution. Biotechnol Adv. 2019;37(5):801-825.
Google Scholar | Crossref | Medline8. Vicentini, FTMdC, Borgheti-Cardoso, LN, Depieri, LV, et al. Delivery systems and local administration routes for therapeutic siRNA. Pharm Res. 2013;30(4):915-931.
Google Scholar | Crossref | Medline9. Yoon, PO, Park, JW, Lee, C-M, et al. Self-assembled micelle interfering RNA for effective and safe targeting of dysregulated genes in pulmonary fibrosis. J Biol Chem. 2016;291(12):6433-6446.
Google Scholar | Crossref | Medline10. Robbins, M, Judge, A, MacLachlan, I. siRNA and innate immunity. Oligonucleotides. 2009;19(2):89-102.
Google Scholar | Crossref | Medline11. Jeong, JH, Mok, H, Oh, Y-K, Park, TG. siRNA conjugate delivery systems. Bioconjugate Chem. 2009;20(1):5-14.
Google Scholar | Crossref | Medline12. Kanasty, R, Dorkin, JR, Vegas, A, Anderson, D. Delivery materials for siRNA therapeutics. Nat Mater. 2013;12(11):967-977.
Google Scholar | Crossref | Medline | ISI13. Falsini, S, Ciani, L, Ristori, S, Fortunato, A, Arcangeli, A. Advances in lipid-based platforms for RNAi therapeutics. J Med Chem. 2014;57(4):1138-1146.
Google Scholar | Crossref | Medline14. Homer, RJ, Elias, JA, Lee, CG, Herzog, E. Modern concepts on the role of inflammation in pulmonary fibrosis. Arch Pathol Lab Med. 2011;135(6):780-788.
Google Scholar | Crossref | Medline | ISI15. Nakao, A, Fujii, M, Matsumura, R, et al. Transient gene transfer and expression of Smad7 prevents bleomycin-induced lung fibrosis in mice. J Clin Invest. 1999;104(1):5-11.
Google Scholar | Crossref | Medline16. Wynn, T . Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214(2):199-210.
Google Scholar | Crossref | Medline | ISI17. Ponticos, M, Holmes, AM, Shi-wen, X, et al. Pivotal role of connective tissue growth factor in lung fibrosis: MAPK-dependent transcriptional activation of type I collagen. Arthritis Rheum. 2009;60(7):2142-2155.
Google Scholar | Crossref | Medline18. Zhou, Y, Lee, J-Y, Lee, C-M, et al. Amphiregulin, an epidermal growth factor receptor ligand, plays an essential role in the pathogenesis of transforming growth factor-β-induced pulmonary fibrosis. J Biol Chem. 2012;287(50):41991-42000.
Google Scholar | Crossref | Medline19. Son, SS, Hwang, S, Park, JH, et al. In vivo silencing of amphiregulin by a novel effective Self-Assembled-Micelle inhibitory RNA ameliorates renal fibrosis via inhibition of EGFR signals. Sci Rep. 2021;11(1):2191.
Google Scholar | Crossref | Medline20. Ministry of Food and Drug Safety (MFDS) . Test Guidelines for Safety Evaluation of Drugs: Annex 2 Repeated Dose Toxicity Study (Notification No. 2017-71). Republic of Korea: Ministry of Food and Drug Safety; 2017.
Google Scholar21. Ministry of Food and Drug Safety (MFDS) . Good Laboratory Practice Regulations for Nonclinical Laboratory Studies (Notification No. 2018-93). Republic of Korea: Ministry of Food and Drug Safety; 2018.
Google Scholar22. Lee, M-J, Jung, H-K, Lee, K-H, et al. A 90-day repeated oral dose toxicity study of Alismatis rhizoma aqueous extract in rats. Toxicol Res. 2019;35(2):191-200.
Google Scholar | Crossref | Medline23. Han, C-T, Kim, D-Y, Nam, C, et al. Acute and 13-week subchronic toxicity studies of hot-water extract of Cynanchi wilfordii Radix in Sprague-Dawley rats. Toxicol Res. 2019;36(1):89-98.
Google Scholar | Crossref | Medline24. Wolford, ST, Schroer, RA, Gohs, FX, et al. Reference range data base for serum chemistry and hematology values in laboratory animals. J Toxicol Environ Health. 1986;18(2):161-188.
Google Scholar | Crossref | Medline25. Serfilippi, LM, Pallman, DR, Russell, B. Serum clinical chemistry and hematology reference values in outbred stocks of albino mice from three commonly used vendors and two inbred strains of albino mice. Contemp Top Lab Anim Sci. 2003;42(3):46-52.
Google Scholar | Medline26. Ameri, M, Schnaars, HA, Sibley, JR, Honor, DJ. Stability of hematologic analytes in monkey, rabbit, rat, and mouse blood stored at 4°C in EDTA using the ADVIA 120 hematology analyzer. Vet Clin Pathol. 2011;40(2):188-193.
Google Scholar | Crossref | Medline27. Vanker, N, Ipp, H. The use of the full blood count and differential parameters to assess immune activation levels in asymptomatic, untreated HIV infection. S Afr Med J. 2013;104(1):45-48.
Google Scholar | Crossref | Medline28. Schnell, MA, Hardy, C, Hawley, M, Propert, KJ, Wilson, JM. Effect of blood collection technique in mice on clinical pathology parameters. Hum Gene Ther. 2002;13(1):155-161.
Google Scholar | Crossref | Medline29. Loeb, WF, Quimby, FW. The Clinical Chemistry of Laboratory Animals. 2nd ed. Philadelphia: Taylor & Francis; 1999.
Google Scholar30. Allison, J, Sunne, R, Huntington, M. Multifactorial splenomegaly. S D Med. 2017;70(12):535-538.
Google Scholar | Medline31. McKenzie, CV, Colonne, CK, Yeo, JH, Fraser, ST. Splenomegaly: pathophysiological bases and therapeutic options. Int J Biochem Cell Biol. 2018;94:40-43.
Google Scholar | Crossref | Medline32. Lapveteläinen, T, Hyttinen, M, Lindblom, J, et al. More knee joint osteoarthritis (OA) in mice after inactivation of one allele of type II procollagen gene but less OA after lifelong voluntary wheel running exercise. Osteoarthritis Cartilage. 2001;9(2):152-160.
Google Scholar | Crossref | Medline33. Richter, GW . Kidney disease. In: Burek, JD, Duprat, P, Owen, R, Peter, CP, Van Zwieten, MJ, eds. International Review of Experimental Pathology. San Diego: Academic Press, 2013, 253-269.
Google Scholar34. Fox, J, Barthold, S, Davisson, M, et al. The Mouse in Biomedical Research: Normative Biology, Husbandry, and Models. New York: Academic Press, 2006, 321-384.
Google Scholar35. Thomas, JA, Colb, HD. Endocrine Toxicology. New York: Raven Press, 1997.
Google Scholar | Crossref

Comments (0)

No login
gif