Abbott N, Bundgaard M, Cserr HF (1981) Fine-structural evidence for a glial blood-brain barrier to protein in the cuttlefish, Sepia officinalis. J Physiol 316:52–53. https://doi.org/10.1007/BF01224761
Amgen F (2019) The endomembrane system, Science Biology Structure of a cell tour of a eukaryotic cell. Khan Academy. https://www.khanacademy.org/science/biology/structure-of-a-cell/tour-of-organelles/a/the-endomembrane-system
Baskin DG (1971) The fine structure of neuroglia in the central nervous system of nereid polychaetes. Zeitschrift für Zellforschung und Mikroskopische Anatomie 119:295–308. https://doi.org/10.1007/BF00306928
CAS Article PubMed Google Scholar
Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871–910. https://doi.org/10.1152/physrev.2001.81.2.871
CAS Article PubMed Google Scholar
Bellier J, Xie Y, Farouk SM, Sakaue Y, Tooyama I, Kimura H (2017) Immunocytochemical and biochemical evidence for the presence of serotonincontaining neurons and nerve fibers in the octopus arm. Brain Struct Funct 222:3043–3061. https://doi.org/10.1007/s00429-017-1385-3
CAS Article PubMed Google Scholar
Bentivoglio M (1989) The Golgi apparatus emerges from nerve cells. Trends Neurosci 21:195–200
Binnington KC, Lane NJ (1980) Perineurial and glial cells in the tick Boophilus microphis (Acarina: Ixodidae): freeze-fracture and tracer studies. J Neurocytol 9:343–362. https://doi.org/10.1007/bf01181541
CAS Article PubMed Google Scholar
Bios-e-16 (2013) Cell biology 04: the ecretory pathway. Harvard Extension’s Cell Biology course. https://www.cureffi.org/2013/02/24/cell-biology-04-the-secretory-pathway/
Boycott BB (1961) The functional organization of the brain of the cuttlefish Sepia officinalis. Proc R Soc Lond B Biol Sci 153:503–534. https://doi.org/10.1098/rspb.1961.0015
Budelmann BU, Young JZ (1985) Central pathways of the nerves of the arms and mantle of Octopus. Philos. Trans R Soc Lond B Biol Sci 310:109–122. https://doi.org/10.1098/rstb.1985.0101
Bundgaard M, Abbott NJ (1981) Fine-structural evidence for a glial blood-brain barrier to protein in the cuttlefish, Sepia offirinalis. J Neurocytol 21:260–275. https://doi.org/10.1016/0006-8993(81)91083-0
Cardone B, Roots BI (1990) Comparative immunocytochemical study of glial filament proteins (glial fibrillary acidic protein and vimentin) in goldfish, octopus, and snail. Glia 3(180):180–192. https://doi.org/10.1002/glia.440030305
CAS Article PubMed Google Scholar
Ceprian M, Fulton D (2019) Glial cell AMPA receptors in nervous system health, injury and disease. Mol Sci 20:23–39. https://doi.org/10.3390/ijms20102450
Clayton DE (1962) A comparative study of the non-nervous elements in the nervous systems of invertebrates. J Ent Zool 234:3–22
Dhruv L, Savio J (2018) Alkaline Phosphatase. StatPearls., https://www.ncbi.nlm.nih.gov/books/NBK459201/
Emmanuel P, PaulV, Deepika RJ (2019) Emerging trends in the industrial production of chemical products by microorganisms. Developments in Applied Microbiology and Biochemistry, https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/oxidoreductases
Graindorge N (2008) Vertical lobe and formation of the menesic trace in the cuttlefish, Sepia officinalis (Doctoral dissertation). Université de Caen Normandie
Gray EG (1969) Electron microscopy of the glio-vascular organization of the brain of octopus. Philos Trans R Soc B Biol Sci. https://doi.org/10.1098/rstb.1969.0002
Gray EG (1970) The fine structure of the vertical lobe of octopus brain. Philos Trans R Soc Lond B. https://doi.org/10.1093/oxfordhb/9780190456757.013.29
Griffiths G (1979) Transport of glial cell acid phosphatase by endoplasmic reticulum into damaged axons. J Cell Sci 36:361–389
Guerra A (1992) Mollusca, cephalopoda. In: Fauna Iberica, Vol. 1. Ed. Ramos, M.A., Museo Nacional de Ciencias Naturales CSIC, Madrid, 1–327. http://hdl.handle.net/10261/50383
Guigui K, Beaudoin A (2007) The use of Oil Red O in sequence with other methods of fingerprint development. J For Identif 57:550–581
Hayashi H (2011) Lipid metabolism and glial lipoproteins in the central nervous system. Biol Pharm Bull 34:453–461. https://doi.org/10.1248/bpb.34.453
CAS Article PubMed Google Scholar
Hirsch GC, Jacobs W (1930) Der Arbeitsrhythmus der Mitteldarmdrüse von Astacus leptodactylus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 12:524–558. https://doi.org/10.1007/BF00337896
Hochner B, Shomrat T (2012) An embodied view of octopus neurobiology. Curr Biol 22:887–892. https://doi.org/10.1016/j.cub.2012.09.001
Holtzman E, Freeman AR, Kashner LA (1970) A cytochemical and electron microscope study of channels in the Schwann cells surrounding lobster giant axons. J Cell Biol 44:438–444. https://doi.org/10.1083/jcb.44.2.438
CAS Article PubMed PubMed Central Google Scholar
Ibrahim G (2020) Fine structure of the central brain in the octopod Eledone cirrhosa (Lamarck, 1798) (Mollusca–Octopoda). Invertebrate neuroscience, revised in 2019
Imperadore P, Shah SB, Helen P, Makarenkova A, Fiorito G (2017) Nerve degeneration and regeneration in the cephalopod mollusc Octopus vulgaris: the case of the pallial nerve. Sci Rep 7:46564. https://doi.org/10.1038/srep46564
CAS Article PubMed PubMed Central Google Scholar
Jonek J, Chociłowski W, Kamínski M, Konecki J (1977) Quantitative determination of acid phosphatase activity detected in tissue sections according to the BURSTONE method. Acta Histochem 59(2):285–289. https://doi.org/10.1016/S0065-1281(77)80051-2
CAS Article PubMed Google Scholar
Keay JBJ, Thornton JW (2006) The Octopus vulgaris estrogen receptor is a constitutive transcriptional activator: evolutionary and functional implications. Endocrinology 147:3861–3869. https://doi.org/10.1210/en.2006-036
CAS Article PubMed Google Scholar
Kettenmann H, Ransom BR (1995) Neuroglia. Oxford University Press, Oxford
Kettenmann H, Ransom BR (2004) Neuroglia. The concept of neuroglia: a historical perspective. Oxford University Press, New York. https://global.oup.com/academic/product/neuroglia-9780199794591?cc=us&lang=en&
Kettenmann HHU, Noda M, Verkhratsky A (2010) Physiology of microglia. Physiol Rev 91:461–553. https://doi.org/10.1152/physrev.00011.2010
Khalid M (2019) Laboratory diagnosis of the causative dermatophytes of Tinea capitis (pdf). World J Pharm Res 8:85–99. https://doi.org/10.20959/wjpr20196-14850
Kimura JHT, Singer TP (1976) Studies on succinate dehydrogenase. J Biol Chem 232:4987–4993
Lane NJ (1981) Invertebrate neuroglia-junctional structure and development. J Exp Biol 95:7–33
Lane NJ, Swales LS (1976) Interrelationships between Golgi, gerl and synaptic vesicles in the nerve cells of insect and gastropod ganglia. J Cell Set 22:435–453
Lane NJ, Treherne JE (1972) Studies on perineurial junctional complexes and the sites of uptake of microperoxidase and lanthanum in the cockroach central nervous system. Tissue Cell 4:427–436. https://doi.org/10.1016/S0040-8166(72)80019-3
CAS Article PubMed Google Scholar
Lank NJ, Trbherne JE (1969) Peroxidase uptake by glial cells in desheathed ganglia of the cockroach. Nat Lond 333:861–862
Lasek RJ, Gainer H, Barker JL (1977) Cell-to-cell transfer of glial proteins to the squid giant axon: the glia-neuron protein transfer hypothesis. J Cell Biol 74:501–523. https://doi.org/10.1083/jcb.74.2.501
CAS Article PubMed PubMed Central Google Scholar
Lima PA, Nardi G, Brown ER (2003) AMPA/kainate and NMDA-like glutamate receptors at the chromatophore neuromuscular junction of the squid: role in synaptic transmission and skin patterning. Eur J Neurosci 17:507–516. https://doi.org/10.1046/j.1460-9568.2003.02477.x
Liscovitch-Brauer N, Alon S, Porath HT, Elstein B, Unger R, Ziv T et al (2017) Trade-off between transcriptome plasticity and genome evolution in cephalopods. Cell 169:191–202. https://doi.org/10.1016/j.cell.2017.03.025
CAS Article PubMed PubMed Central Google Scholar
Livingston DC, CoombsL MM, Franks M, Maggi V, Gahan PB (1969) A lead phthalocyanin method for the demonstration of acid hydrolases in plant and animal tissues. Histochemie 18:48–60. https://doi.org/10.1007/BF00309901
CAS Article PubMed Google Scholar
Mandon EC, Trueman SF, Gilmore R (2013) Protein translocation across the rough endoplasmic reticulum. Cold Spring Harb Perspect Biol 5:a013342. https://doi.org/10.1101/cshperspect.a013342
CAS Article PubMed PubMed Central Google Scholar
Martins OB, DeMeis L (1985) Stability and partial reactions of soluble and membrane-bound sarcoplasmic reticulum ATPase. Biol Chem 260:6776–6781
Medzihradsky F, Sellinger OZ, Nandhasri P, Esantiago J (1972) ATPase activity in glial cells and in neuronal perikarya of rat cerebral cortex during early postnatal development. J Neurochem 19:543–545. https://doi.org/10.1111/j.1471-4159.1972.tb01365.x
CAS Article PubMed Google Scholar
Moussa T, Banhawy M (1958) Studies on the Nissl substance, neurofibrillae and intracellular trabeculae of insect neurones. J R Microsc Soc 78:114–119
Mulyaningsih B, Umniyati SR, Hadianto T (2017) Detection of nonspecific esterase activity in organophosphate resistant strain of Aedes albopictus skuse (Diptera: Culicidae) larvae in Yogyakarta, Indonesia. Southeast Asian. J Trop Med Public Health 48:552–560
Murphy S, Pearce B (1987) Functional receptors for neurotransmitters on astroglial cells. Neuroscience 22:381–394. https://doi.org/10.1016/0306-4522(87)90342-3
CAS Article PubMed Google Scholar
Nixon M, Young JZ (2003) The brains and lives of cephalopods. Oxford University Press, Oxford
Packard A, Albergoni V (1970) Relative growth, nucleic acid content and cell numbers of the brain in Octopus vulgaris (Lamarck). Exp Biol 52:539–552
Pantin GFA (1948) Notes on microscopical technique for zoologists. Cambridge University Press, Cambridge
Pearse AGE (1968) Histochemistry: theoritical and applied, vol 1, 3rd edn. Churchill, London
Perry CJ, Barron AB (2013) Neural mechanisms of reward in insects. Annu Rev Entomol 58:543–562. https://doi.org/10.1146/annurev-ento-120811-153631
Comments (0)