Glial cells in the posterior sub-esophageal mass of the brain in Sepia officinalis (Linnaeus, 1758) (decapodiformes–sepiida): ultrastructure and cytochemical studies

Abbott N, Bundgaard M, Cserr HF (1981) Fine-structural evidence for a glial blood-brain barrier to protein in the cuttlefish, Sepia officinalis. J Physiol 316:52–53. https://doi.org/10.1007/BF01224761

Article  Google Scholar 

Amgen F (2019) The endomembrane system, Science Biology Structure of a cell tour of a eukaryotic cell. Khan Academy. https://www.khanacademy.org/science/biology/structure-of-a-cell/tour-of-organelles/a/the-endomembrane-system

Baskin DG (1971) The fine structure of neuroglia in the central nervous system of nereid polychaetes. Zeitschrift für Zellforschung und Mikroskopische Anatomie 119:295–308. https://doi.org/10.1007/BF00306928

CAS  Article  PubMed  Google Scholar 

Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871–910. https://doi.org/10.1152/physrev.2001.81.2.871

CAS  Article  PubMed  Google Scholar 

Bellier J, Xie Y, Farouk SM, Sakaue Y, Tooyama I, Kimura H (2017) Immunocytochemical and biochemical evidence for the presence of serotonincontaining neurons and nerve fibers in the octopus arm. Brain Struct Funct 222:3043–3061. https://doi.org/10.1007/s00429-017-1385-3

CAS  Article  PubMed  Google Scholar 

Bentivoglio M (1989) The Golgi apparatus emerges from nerve cells. Trends Neurosci 21:195–200

Article  Google Scholar 

Binnington KC, Lane NJ (1980) Perineurial and glial cells in the tick Boophilus microphis (Acarina: Ixodidae): freeze-fracture and tracer studies. J Neurocytol 9:343–362. https://doi.org/10.1007/bf01181541

CAS  Article  PubMed  Google Scholar 

Bios-e-16 (2013) Cell biology 04: the ecretory pathway. Harvard Extension’s Cell Biology course. https://www.cureffi.org/2013/02/24/cell-biology-04-the-secretory-pathway/

Boycott BB (1961) The functional organization of the brain of the cuttlefish Sepia officinalis. Proc R Soc Lond B Biol Sci 153:503–534. https://doi.org/10.1098/rspb.1961.0015

Article  Google Scholar 

Budelmann BU, Young JZ (1985) Central pathways of the nerves of the arms and mantle of Octopus. Philos. Trans R Soc Lond B Biol Sci 310:109–122. https://doi.org/10.1098/rstb.1985.0101

Article  Google Scholar 

Bundgaard M, Abbott NJ (1981) Fine-structural evidence for a glial blood-brain barrier to protein in the cuttlefish, Sepia offirinalis. J Neurocytol 21:260–275. https://doi.org/10.1016/0006-8993(81)91083-0

Article  Google Scholar 

Cardone B, Roots BI (1990) Comparative immunocytochemical study of glial filament proteins (glial fibrillary acidic protein and vimentin) in goldfish, octopus, and snail. Glia 3(180):180–192. https://doi.org/10.1002/glia.440030305

CAS  Article  PubMed  Google Scholar 

Ceprian M, Fulton D (2019) Glial cell AMPA receptors in nervous system health, injury and disease. Mol Sci 20:23–39. https://doi.org/10.3390/ijms20102450

CAS  Article  Google Scholar 

Clayton DE (1962) A comparative study of the non-nervous elements in the nervous systems of invertebrates. J Ent Zool 234:3–22

Google Scholar 

Dhruv L, Savio J (2018) Alkaline Phosphatase. StatPearls., https://www.ncbi.nlm.nih.gov/books/NBK459201/

Emmanuel P, PaulV, Deepika RJ (2019) Emerging trends in the industrial production of chemical products by microorganisms. Developments in Applied Microbiology and Biochemistry, https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/oxidoreductases

Graindorge N (2008) Vertical lobe and formation of the menesic trace in the cuttlefish, Sepia officinalis (Doctoral dissertation). Université de Caen Normandie

Gray EG (1969) Electron microscopy of the glio-vascular organization of the brain of octopus. Philos Trans R Soc B Biol Sci. https://doi.org/10.1098/rstb.1969.0002

Article  Google Scholar 

Gray EG (1970) The fine structure of the vertical lobe of octopus brain. Philos Trans R Soc Lond B. https://doi.org/10.1093/oxfordhb/9780190456757.013.29

Article  Google Scholar 

Griffiths G (1979) Transport of glial cell acid phosphatase by endoplasmic reticulum into damaged axons. J Cell Sci 36:361–389

CAS  PubMed  Google Scholar 

Guerra A (1992) Mollusca, cephalopoda. In: Fauna Iberica, Vol. 1. Ed. Ramos, M.A., Museo Nacional de Ciencias Naturales CSIC, Madrid, 1–327. http://hdl.handle.net/10261/50383

Guigui K, Beaudoin A (2007) The use of Oil Red O in sequence with other methods of fingerprint development. J For Identif 57:550–581

Google Scholar 

Hayashi H (2011) Lipid metabolism and glial lipoproteins in the central nervous system. Biol Pharm Bull 34:453–461. https://doi.org/10.1248/bpb.34.453

CAS  Article  PubMed  Google Scholar 

Hirsch GC, Jacobs W (1930) Der Arbeitsrhythmus der Mitteldarmdrüse von Astacus leptodactylus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 12:524–558. https://doi.org/10.1007/BF00337896

Article  Google Scholar 

Hochner B, Shomrat T (2012) An embodied view of octopus neurobiology. Curr Biol 22:887–892. https://doi.org/10.1016/j.cub.2012.09.001

CAS  Article  Google Scholar 

Holtzman E, Freeman AR, Kashner LA (1970) A cytochemical and electron microscope study of channels in the Schwann cells surrounding lobster giant axons. J Cell Biol 44:438–444. https://doi.org/10.1083/jcb.44.2.438

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ibrahim G (2020) Fine structure of the central brain in the octopod Eledone cirrhosa (Lamarck, 1798) (Mollusca–Octopoda). Invertebrate neuroscience, revised in 2019

Imperadore P, Shah SB, Helen P, Makarenkova A, Fiorito G (2017) Nerve degeneration and regeneration in the cephalopod mollusc Octopus vulgaris: the case of the pallial nerve. Sci Rep 7:46564. https://doi.org/10.1038/srep46564

CAS  Article  PubMed  PubMed Central  Google Scholar 

Jonek J, Chociłowski W, Kamínski M, Konecki J (1977) Quantitative determination of acid phosphatase activity detected in tissue sections according to the BURSTONE method. Acta Histochem 59(2):285–289. https://doi.org/10.1016/S0065-1281(77)80051-2

CAS  Article  PubMed  Google Scholar 

Keay JBJ, Thornton JW (2006) The Octopus vulgaris estrogen receptor is a constitutive transcriptional activator: evolutionary and functional implications. Endocrinology 147:3861–3869. https://doi.org/10.1210/en.2006-036

CAS  Article  PubMed  Google Scholar 

Kettenmann H, Ransom BR (1995) Neuroglia. Oxford University Press, Oxford

Google Scholar 

Kettenmann H, Ransom BR (2004) Neuroglia. The concept of neuroglia: a historical perspective. Oxford University Press, New York. https://global.oup.com/academic/product/neuroglia-9780199794591?cc=us&lang=en&

Kettenmann HHU, Noda M, Verkhratsky A (2010) Physiology of microglia. Physiol Rev 91:461–553. https://doi.org/10.1152/physrev.00011.2010

CAS  Article  Google Scholar 

Khalid M (2019) Laboratory diagnosis of the causative dermatophytes of Tinea capitis (pdf). World J Pharm Res 8:85–99. https://doi.org/10.20959/wjpr20196-14850

CAS  Article  Google Scholar 

Kimura JHT, Singer TP (1976) Studies on succinate dehydrogenase. J Biol Chem 232:4987–4993

Google Scholar 

Lane NJ (1981) Invertebrate neuroglia-junctional structure and development. J Exp Biol 95:7–33

Google Scholar 

Lane NJ, Swales LS (1976) Interrelationships between Golgi, gerl and synaptic vesicles in the nerve cells of insect and gastropod ganglia. J Cell Set 22:435–453

CAS  Google Scholar 

Lane NJ, Treherne JE (1972) Studies on perineurial junctional complexes and the sites of uptake of microperoxidase and lanthanum in the cockroach central nervous system. Tissue Cell 4:427–436. https://doi.org/10.1016/S0040-8166(72)80019-3

CAS  Article  PubMed  Google Scholar 

Lank NJ, Trbherne JE (1969) Peroxidase uptake by glial cells in desheathed ganglia of the cockroach. Nat Lond 333:861–862

Google Scholar 

Lasek RJ, Gainer H, Barker JL (1977) Cell-to-cell transfer of glial proteins to the squid giant axon: the glia-neuron protein transfer hypothesis. J Cell Biol 74:501–523. https://doi.org/10.1083/jcb.74.2.501

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lima PA, Nardi G, Brown ER (2003) AMPA/kainate and NMDA-like glutamate receptors at the chromatophore neuromuscular junction of the squid: role in synaptic transmission and skin patterning. Eur J Neurosci 17:507–516. https://doi.org/10.1046/j.1460-9568.2003.02477.x

Article  PubMed  Google Scholar 

Liscovitch-Brauer N, Alon S, Porath HT, Elstein B, Unger R, Ziv T et al (2017) Trade-off between transcriptome plasticity and genome evolution in cephalopods. Cell 169:191–202. https://doi.org/10.1016/j.cell.2017.03.025

CAS  Article  PubMed  PubMed Central  Google Scholar 

Livingston DC, CoombsL MM, Franks M, Maggi V, Gahan PB (1969) A lead phthalocyanin method for the demonstration of acid hydrolases in plant and animal tissues. Histochemie 18:48–60. https://doi.org/10.1007/BF00309901

CAS  Article  PubMed  Google Scholar 

Mandon EC, Trueman SF, Gilmore R (2013) Protein translocation across the rough endoplasmic reticulum. Cold Spring Harb Perspect Biol 5:a013342. https://doi.org/10.1101/cshperspect.a013342

CAS  Article  PubMed  PubMed Central  Google Scholar 

Martins OB, DeMeis L (1985) Stability and partial reactions of soluble and membrane-bound sarcoplasmic reticulum ATPase. Biol Chem 260:6776–6781

CAS  Google Scholar 

Medzihradsky F, Sellinger OZ, Nandhasri P, Esantiago J (1972) ATPase activity in glial cells and in neuronal perikarya of rat cerebral cortex during early postnatal development. J Neurochem 19:543–545. https://doi.org/10.1111/j.1471-4159.1972.tb01365.x

CAS  Article  PubMed  Google Scholar 

Moussa T, Banhawy M (1958) Studies on the Nissl substance, neurofibrillae and intracellular trabeculae of insect neurones. J R Microsc Soc 78:114–119

CAS  Article  Google Scholar 

Mulyaningsih B, Umniyati SR, Hadianto T (2017) Detection of nonspecific esterase activity in organophosphate resistant strain of Aedes albopictus skuse (Diptera: Culicidae) larvae in Yogyakarta, Indonesia. Southeast Asian. J Trop Med Public Health 48:552–560

Google Scholar 

Murphy S, Pearce B (1987) Functional receptors for neurotransmitters on astroglial cells. Neuroscience 22:381–394. https://doi.org/10.1016/0306-4522(87)90342-3

CAS  Article  PubMed  Google Scholar 

Nixon M, Young JZ (2003) The brains and lives of cephalopods. Oxford University Press, Oxford

Google Scholar 

Packard A, Albergoni V (1970) Relative growth, nucleic acid content and cell numbers of the brain in Octopus vulgaris (Lamarck). Exp Biol 52:539–552

CAS  Google Scholar 

Pantin GFA (1948) Notes on microscopical technique for zoologists. Cambridge University Press, Cambridge

Google Scholar 

Pearse AGE (1968) Histochemistry: theoritical and applied, vol 1, 3rd edn. Churchill, London

Google Scholar 

Perry CJ, Barron AB (2013) Neural mechanisms of reward in insects. Annu Rev Entomol 58:543–562. https://doi.org/10.1146/annurev-ento-120811-153631

CAS  Article  PubMed  PubMed Central 

Comments (0)

No login
gif