Meriläinen PT. A fast differential paramagnetic O2-sensor. Int J Clin Monit Comput 1988; 5: 187–195
2.Meriläinen PT. A differential paramagnetic sensor for breath-by-breath oximetry. J Clin Monit 1990; 6: 65–73
3.Bengtsson J, Bengtsson A, Stenqvist O, Bengtson JP. Effects of hyperventilation on the inspiratory to end-tidal oxygen difference. Br J Anaesth 1994; 73: 140–144
CAS Article PubMed Google Scholar
4.Bengtsson J, Ederberg S, Stenqvist O, Bengtson JP. Do changes in cardiac output affect the inspiratory to end-tidal oxygen difference? Acta Anaesthesiol Scand 1995; 39: 1075–1079
CAS Article PubMed Google Scholar
5.Meriläinen PT. Metabolic monitor. Int J Clin Monit Comput 1987; 4:167–177
6.Takala J, Keinänen O, Väisänen P, Kari A. Measurement of gas exchange in intensive care: Laboratory and clinical validation of a new device. Crit Care Med 1989; 17: 1041–1047
CAS Article PubMed Google Scholar
7.Bernstein DP. Continuous noninvasive real-time monitoring of stroke volume and cardiac output by thoracic electrical bioimpedance. Crit Care Med 1986; 14: 898–901
CAS Article PubMed Google Scholar
8.Jewkes C, Sear JW, Verhoeff F, Sanders DJ, Foex P. Noninvasive measurement of cardiac output by thoracic electrical bioimpedance: a study of reproducibility and comparison with thermodilution. Br J Anaesth 1991; 67: 788–794
CAS Article PubMed Google Scholar
9.Sramec BB. Hemodynamic and pump-performance monitoring by electrical bioimpedance. Problems in Respiratory Care 1989; 2: 274–290
10.Nunn JF. Nunn’s applied respiratory physiology. Oxford: Butterworth-Heinemann Ltd, 1993
11.Schoene RB. Physiology of exercise. In: Pierson DJ, Kacmarek RM, eds. Foundations of Respiratory Care. New York: Churchill Livingstone, 1992: 135–139
12.Diamond L, Casaburi R, Wasserman K, Whipp BJ. Kinetics of gas exchange and ventilation in transitions from rest or prior exercise. J Appl Physiol 1977; 43: 704–708
13.Wasserman K. Breathing during exercise. N Engl J Med 1978; 298: 780–785
CAS Article PubMed Google Scholar
14.Jones NL, McHardy CJR, Naimark A. Physiological dead space and alveolar-arterial gas pressure differences during exercise. Clin Sci 1966; 31: 19–29
15.Eberhard P, Mindt W, Schäfer R. Cutaneous blood gas monitoring in the adult. Crit Care Med 1981; 9: 702–705
CAS Article PubMed Google Scholar
16.Hesser CM, Matell G. Effects of light and moderate exercise on alveolar-arterial O2 tension difference in man. Acta Physiol Scand 1965; 63: 247–256
CAS Article PubMed Google Scholar
17.Nunn JF. Nunn’s applied respiratory physiology. Oxford: Butterworth-Heinemann Ltd, 1993
18.Gueugniaud P-Y, Muchada R, Bertin-Maghit M, Griffith N, Petit P. Non-invasive continuous haemodynamic and PetCO2 monitoring during peroperative cardiac arrest. Can J Anaesth 1995; 42: 910–913
CAS Article PubMed Google Scholar
19.Morimoto Y, Kemmotsu O, Murakami F, Yamamura T, Mayumi T. End-tidal CO2 changes under constant cardiac output during cardiopulmonary resuscitation. Crit Care Med 1993; 21:1572–1576
CAS Article PubMed Google Scholar
20.Weil MH, Bisera J, Trevino RP, Rackow EC. Cardiac output and end-tidal carbon dioxide. Crit Care Med 1985; 13: 907–909
CAS Article PubMed Google Scholar
21.Isserles SA, Breen PH. Can changes in end-tidal PCO2 measure changes in cardiac output? Anesth Analg 1991; 73: 808–814
CAS Article PubMed Google Scholar
22.Shibutani K, Muraoka M, Shirasaki S, Kubal K, Sanchala VT, Gupte P. Do changes in end-tidal PCO2 quantitatively reflect changes in cardiac output. Anesth Analg 1994; 79: 829–833
CAS Article PubMed Google Scholar
23.Nunn JF. Nunn’s applied respiratory physiology. Oxford: Butterworth-Heinemann Ltd, 1993
24.Baker RW, Burki NK. Alterations in ventilatory to tidal volume. pattern and ratio of dead space to tidal volume. Chest 1987; 92: 1013–1017
Comments (0)