1.
Dowden, H., Munro, J. Trends in Clinical Success Rates and Therapeutic Focus. Nat. Rev. Drug Discov. 2019, 18, 495–496.
Google Scholar |
Crossref |
Medline2.
Harrison, R. K. Phase II and Phase III Failures: 2013–2015. Nat. Rev. Drug Discov. 2016, 15, 817–818.
Google Scholar |
Crossref |
Medline3.
Langhans, S. A. Three-Dimensional In Vitro Cell Culture Models in Drug Discovery and Drug Repositioning. Front. Pharmacol. 2018, 9, 6.
Google Scholar |
Crossref |
Medline4.
Horvath, P., Aulner, N., Bickle, M., et al. Screening Out Irrelevant Cell-Based Models of Disease. Nat. Rev. Drug Discov. 2016, 15, 751–769.
Google Scholar |
Crossref |
Medline5.
Pampaloni, F., Reynaud, E. G., Stelzer, E. H. K. The Third Dimension Bridges the Gap between Cell Culture and Live Tissue. Nat. Rev. Mol. Cell Biol. 2007, 8, 839–845.
Google Scholar |
Crossref |
Medline6.
Kelm, J. M., Lal-Nag, M., Sittampalam, G. S., et al. Translational In Vitro Research: Integrating 3D Drug Discovery and Development Processes into the Drug Development Pipeline. Drug Discov. Today 2019, 24, 26–30.
Google Scholar |
Crossref |
Medline7.
Ekert, J. E., Deakyne, J., Pribul-Allen, P., et al. Recommended Guidelines for Developing, Qualifying, and Implementing Complex In Vitro Models (CIVMs) for Drug Discovery. SLAS Discov. 2020, 25, 1174–1190.
Google Scholar |
Medline8.
Batista Leite, S., Cipriano, M., Carpi, D., et al. Establishing the Scientific Validity of Complex In Vitro Models: Results of a EURL ECVAM Survey. Publ. Off. Eur. Union 2021, 1–28.
Google Scholar9.
Ingber, D. E. Is It Time for Reviewer 3 to Request Human Organ Chip Experiments Instead of Animal Validation Studies? Adv. Sci. 2020, 7, 2002030.
Google Scholar |
Crossref10.
Gaskell, H., Sharma, P., Colley, H. E., et al. Characterization of a Functional C3A Liver Spheroid Model. Toxicol. Res. (Camb.) 2016, 5, 1053–1065.
Google Scholar |
Crossref |
Medline11.
Kondo, J., Ekawa, T., Endo, H., et al. High-Throughput Screening in Colorectal Cancer Tissue-Originated Spheroids. Cancer Sci. 2019, 110, 345–355.
Google Scholar |
Crossref |
Medline12.
Rossi, G., Manfrin, A., Lutolf, M. P. Progress and Potential in Organoid Research. Nat. Rev. Genet. 2018, 19, 671–687.
Google Scholar |
Crossref |
Medline13.
Tanaka, N., Osman, A. A., Takahashi, Y., et al. Head and Neck Cancer Organoids Established by Modification of the CTOS Method Can Be Used to Predict In Vivo Drug Sensitivity. Oral Oncol. 2018, 87, 49–57.
Google Scholar |
Crossref |
Medline14.
Bock, C., Boutros, M., Camp, J. G., et al. The Organoid Cell Atlas. Nat. Biotechnol. 2020, 39, 13–17.
Google Scholar |
Crossref15.
Ma, X., Liu, J., Zhu, W., et al. 3D Bioprinting of Functional Tissue Models for Personalized Drug Screening and In Vitro Disease Modeling. Adv. Drug Deliv. Rev. 2018, 132, 235–251.
Google Scholar |
Crossref |
Medline16.
Meng, F., Meyer, C. M., Joung, D., et al. 3D Bioprinted In Vitro Metastatic Models via Reconstruction of Tumor Microenvironments. Adv. Mater. 2019, 31, 1806899.
Google Scholar |
Crossref17.
Kim, J. H., Kim, I., Seol, Y. J., et al. Neural Cell Integration into 3D Bioprinted Skeletal Muscle Constructs Accelerates Restoration of Muscle Function. Nat. Commun. 2020, 11, 1025.
Google Scholar |
Crossref |
Medline18.
Low, L. A., Mummery, C., Berridge, B. R., et al. Organs-on-Chips: Into the Next Decade. Nat. Rev. Drug Discov. 2021, 20, 345–361.
Google Scholar |
Crossref |
Medline19.
Wevers, N. R., Kasi, D. G., Gray, T., et al. A Perfused Human Blood–Brain Barrier On-a-Chip for High-Throughput Assessment of Barrier Function and Antibody Transport. Fluids Barriers CNS 2018, 15, 23.
Google Scholar |
Crossref |
Medline20.
Obermeier, B., Daneman, R., Ransohoff, R. M. Development, Maintenance and Disruption of the Blood-Brain Barrier. Nat. Med. 2013, 19, 1584–1596.
Google Scholar |
Crossref |
Medline21.
Park, S. E., Georgescu, A., Huh, D. Organoids-on-a-Chip. Science 2019, 364, 960–965.
Google Scholar |
Crossref |
Medline22.
Yu, F., Hunziker, W., Choudhury, D. Engineering Microfluidic Organoid-on-a-Chip Platforms. Micromachines 2019, 10, 165.
Google Scholar |
Crossref23.
Zhang, S., Wan, Z., Kamm, R. D. Vascularized Organoids on a Chip: Strategies for Engineering Organoids with Functional Vasculature. Lab Chip 2021, 21, 473–488.
Google Scholar |
Crossref |
Medline24.
Hofer, M., Lutolf, M. P. Engineering Organoids. Nat. Rev. Mater. 2021, 6, 402–420.
Google Scholar |
Crossref25.
Lawlor, K. T., Vanslambrouck, J. M., Higgins, J. W., et al. Cellular Extrusion Bioprinting Improves Kidney Organoid Reproducibility and Conformation. Nat. Mater. 2021, 20, 260–271.
Google Scholar |
Crossref |
Medline26.
Humphreys, B. D. Bioprinting Better Kidney Organoids. Nat. Mater. 2021, 20, 128–130.
Google Scholar |
Crossref |
Medline27.
Watkins, P. B. The DILI-sim Initiative: Insights into Hepatotoxicity Mechanisms and Biomarker Interpretation. Clin. Transl. Sci. 2019, 12, 122–129.
Google Scholar |
Crossref |
Medline28.
Liu, X., Michael, S., Bharti, K., et al. A Biofabricated Vascularized Skin Model of Atopic Dermatitis for Preclinical Studies. Biofabrication 2020, 12, 035002.
Google Scholar |
Crossref |
Medline29.
Browning, J. R., Derr, P., Derr, K., et al. A 3D Biofabricated Cutaneous Squamous Cell Carcinoma Tissue Model with Multi-Channel Confocal Microscopy Imaging Biomarkers to Quantify Antitumor Effects of Chemotherapeutics in Tissue. Oncotarget 2020, 11, 2587–2596.
Google Scholar |
Crossref |
Medline30.
Scannell, J. W., Bosley, J. When Quality Beats Quantity: Decision Theory, Drug Discovery, and the Reproducibility Crisis. PLoS One 2016, 11, e0147215.
Google Scholar |
Crossref |
Medline31.
Mazzoleni, G., Di Lorenzo, D., Steimberg, N. Modelling Tissues in 3D: The Next Future of Pharmaco-Toxicology and Food Research? Genes Nutr. 2009, 4, 13–22.
Google Scholar |
Crossref |
Medline32.
Jung, E. C., Maibach, H. I. Animal Models for Percutaneous Absorption. J. Appl. Toxicol. 2015, 35, 1–10.
Google Scholar |
Crossref |
Medline33.
Fried, L. E., Arbiser, J. L. Application of Angiogenesis to Clinical Dermatology. Adv. Dermatol. 2008, 24, 89–103.
Google Scholar |
Crossref |
Medline34.
Richarz, N. A., Boada, A., Carrascosa, J. M. Angiogenesis in Dermatology—Insights of Molecular Mechanisms and Latest Developments. Actas Dermosifiliogr. 2017, 108, 515–523.
Google Scholar |
Crossref |
Medline35.
Genovese, A., Detoraki, A., Granata, F., et al. Angiogenesis, Lymphangiogenesis and Atopic Dermatitis. Chem. Immunol. Allergy 2012, 96, 50–60.
Google Scholar |
Crossref |
Medline36.
He, H., Guttman-Yassky, E. JAK Inhibitors for Atopic Dermatitis: An Update. Am. J. Clin. Dermatol. 2019, 20, 181–192.
Google Scholar |
Crossref |
Medline37.
Boussaad, I., Cruciani, G., Bolognin, S., et al. Integrated, Automated Maintenance, Expansion and Differentiation of 2D and 3D Patient-Derived Cellular Models for High Throughput Drug Screening. Sci. Rep. 2021, 11, 1439.
Google Scholar |
Crossref38.
Durens, M., Nestor, J., Williams, M., et al. High-Throughput Screening of Human Induced Pluripotent Stem Cell-Derived Brain Organoids. J. Neurosci. Methods 2020, 335, 108627.
Google Scholar |
Crossref |
Medline39.
Renner, H., Grabos, M., Becker, K. J., et al. A Fully Automated High-Throughput Workflow for 3D-Based Chemical Screening in Human Midbrain Organoids. Elife 2020, 9, e52904.
Google Scholar |
Crossref40.
Bar, H., Zweifach, A. Z′ Does Not Need to Be > 0.5. SLAS Discov. 2020, 25, 1000–1008.
Google Scholar |
Medline41.
Wei, Z., Liu, X., Ooka, M., et al. Two-Dimensional Cellular and Three-Dimensional Bio-Printed Skin Models to Screen Topical-Use Compounds for Irritation Potential. Front. Bioeng. Biotechnol. 2020, 8, 109.
Google Scholar |
Crossref |
Medline42.
Chen, Y., Tristan, C. A., Chen, L., et al. A Versatile Polypharmacology Platform Promotes Cytoprotection and Viability of Human Pluripotent and Differentiated Cells. Nat. Methods 2021, 18, 528–541.
Google Scholar |
Crossref |
Medline43.
Derr, K., Zou, J., Luo, K., et al. Fully Three-Dimensional Bioprinted Skin Equivalent Constructs with Validated Morphology and Barrier Function. Tissue Eng. Part C Methods 2019, 25, 334–343.
Google Scholar |
Crossref |
Medline44.
Ramiah Rajasekaran, P., Chapin, A. A., Quan, D. N., et al. 3D-Printed Electrochemical Sensor-Integrated Transwell Systems. Microsyst. Nanoeng. 2020, 6, 100.
Google Scholar |
Crossref45.
Anguiano, M., Castilla, C., Maška, M., et al. Characterization of Three-Dimensional Cancer Cell Migration in Mixed Collagen-Matrigel Scaffolds Using Microfluidics and Image Analysis. PLoS One 2017, 12, e0171417.
Google Scholar |
Crossref |
Medline46.
Montesanto, S., Smithers, N. P., Bucchieri, F., et al. Establishment of a Pulmonary Epithelial Barrier on Biodegradable Poly-l-Lactic-Acid Membranes. PLoS One 2019, 14, e0210830.
Google Scholar |
Crossref |
Medline47.
Booij, T. H., Price, L. S., Danen, E. H. J. 3D Cell-Based Assays for Drug Screens: Challenges in Imaging, Image Analysis, and High-Content Analysis. SLAS Discov. 2019, 24, 615–627.
Google Scholar |
Medline48.
Carragher, N., Piccinini, F., Tesei, A., et al. Concerns, Challenges and Promises of High-Content Analysis of 3D Cellular Models. Nat. Rev. Drug Discov. 2018, 17, 606.
Google Scholar |
Crossref |
Medline49.
Boutin, M. E., Voss, T. C., Titus, S. A., et al. A High-Throughput Imaging and Nuclear Segmentation Analysis Protocol for Cleared 3D Culture Models. Sci. Rep. 2018, 8, 11135.
Google Scholar |
Crossref |
Medline50.
Dingle, Y. T. L., Liaudanskaya, V., Finnegan, L. T., et al. Functional Characterization of Three-Dimensional Cortical Cultures for In Vitro Modeling of Brain Networks. iScience 2020, 23, 101434.
Google Scholar |
Crossref |
Medline51.
Ishikawa, K., Yoshida, K., Kanie, K., et al. Morphology-Based Analysis of Myoblasts for Prediction of Myotube Formation. SLAS Discov. 2019, 24, 47–56.
Google Scholar |
Medline52.
Padi, S., Manescu, P., Schaub, N., et al. Comparison of Artificial Intelligence Based Approaches to Cell Function Prediction. Informatics Med. Unlocked 2020, 18, 100270.
Google Scholar |
Crossref53.
Schaub, N. J., Hotaling, N. A., Manescu, P., et al. Deep Learning Predicts Function of Live Retinal Pigment Epithelium from Quantitative Microscopy. J. Clin. Invest. 2020, 130, 1010–1023.
Google Scholar |
Crossref |
Medline54.
Obermeier, B., Verma, A., Ransohoff, R. M. The Blood-Brain Barrier. Handb. Clin. Neurol. 2016, 133, 39–59.
Google Scholar |
Comments (0)