Development of an Image-Based HCS-Compatible Method for Endothelial Barrier Function Assessment

1. Diamond, M., Peniston Feliciano, H. L., Sanghavi, D., et al. Acute Respiratory Distress Syndrome. In StatPearls; Treasure Island, FL, 2020.
Google Scholar2. Ashbaugh, D. G., Bigelow, D. B., Petty, T. L., et al. Acute Respiratory Distress in Adults. Lancet 1967, 2, 319–323.
Google Scholar | Crossref | Medline3. Matthay, M. A., Zemans, R. L., Zimmerman, G. A., et al. Acute Respiratory Distress Syndrome. Nat. Rev. Dis. Primers 2019, 5, 18.
Google Scholar | Crossref | Medline4. Tomashefski, J. F. . Pulmonary Pathology of Acute Respiratory Distress Syndrome. Clin. Chest Med. 2000, 21, 435–466.
Google Scholar | Crossref | Medline5. Herrero, R., Sanchez, G., Lorente, J. A. New Insights into the Mechanisms of Pulmonary Edema in Acute Lung Injury. Ann. Transl. Med. 2018, 6, 32.
Google Scholar | Crossref | Medline6. Orfanos, S. E., Mavrommati, I., Korovesi, I., et al. Pulmonary Endothelium in Acute Lung Injury: From Basic Science to the Critically Ill. Intensive Care Med. 2004, 30, 1702–1714.
Google Scholar | Crossref | Medline7. Wang, A., Gao, G., Wang, S., et al. Clinical Characteristics and Risk Factors of Acute Respiratory Distress Syndrome (ARDS) in COVID-19 Patients in Beijing, China: A Retrospective Study. Med. Sci. Monit. 2020, 26, e9259.74.
Google Scholar8. Contou, D., Pajot, O., Cally, R., et al. Pulmonary Embolism or Thrombosis in ARDS COVID-19 Patients: A French Monocenter Retrospective Study. PLoS One 2020, 15, e0238413.
Google Scholar | Crossref | Medline9. Batah, S. S., Fabro, A. T. Pulmonary Pathology of ARDS in COVID-19: A Pathological Review for Clinicians. Respir. Med. 2020, 176, 106239.
Google Scholar | Crossref | Medline10. Komarova, Y., Malik, A. B. Regulation of Endothelial Permeability via Paracellular and Transcellular Transport Pathways. Annu. Rev. Physiol. 2010, 72, 463–493.
Google Scholar | Crossref | Medline11. Millar, F. R., Summers, C., Griffiths, M. J., et al. The Pulmonary Endothelium in Acute Respiratory Distress Syndrome: Insights and Therapeutic Opportunities. Thorax 2016, 71, 462–473.
Google Scholar | Crossref | Medline12. Rahimi, N. Defenders and Challengers of Endothelial Barrier Function. Front. Immunol. 2017, 8, 1847.
Google Scholar | Crossref | Medline13. Muller-Redetzky, H. C., Suttorp, N., Witzenrath, M. Dynamics of Pulmonary Endothelial Barrier Function in Acute Inflammation: Mechanisms and Therapeutic Perspectives. Cell Tissue Res. 2014, 355, 657–673.
Google Scholar | Crossref | Medline14. Barabutis, N., Verin, A., Catravas, J. D. Regulation of Pulmonary Endothelial Barrier Function by Kinases. Am. J. Physiol. Lung Cell. Mol. Physiol. 2016, 311, L832–L845.
Google Scholar | Crossref | Medline15. Wilkerson, B. A., Argraves, K. M. The Role of Sphingosine-1-Phosphate in Endothelial Barrier Function. Biochim. Biophys. Acta 2014, 1841, 1403–1412.
Google Scholar | Crossref | Medline16. Mehta, D., Ravindran, K., Kuebler, W. M. Novel Regulators of Endothelial Barrier Function. Am. J. Physiol. Lung Cell. Mol. Physiol. 2014, 307, L924–L935.
Google Scholar | Crossref | Medline17. Kuppers, V., Vockel, M., Nottebaum, A. F., et al. Phosphatases and Kinases as Regulators of the Endothelial Barrier Function. Cell Tissue Res. 2014, 355, 577–586.
Google Scholar | Crossref | Medline18. Amado-Azevedo, J., Valent, E. T., Van Nieuw Amerongen, G. P. Regulation of the Endothelial Barrier Function: A Filum Granum of Cellular Forces, Rho-GTPase Signaling and Microenvironment. Cell Tissue Res. 2014, 355, 557–576.
Google Scholar | Crossref | Medline19. Thennes, T., Mehta, D. Heterotrimeric G Proteins, Focal Adhesion Kinase, and Endothelial Barrier Function. Microvasc. Res. 2012, 83, 31–44.
Google Scholar | Crossref | Medline20. Shen, Q., Rigor, R. R., Pivetti, C. D., et al. Myosin Light Chain Kinase in Microvascular Endothelial Barrier Function. Cardiovasc. Res. 2010, 87, 272–280.
Google Scholar | Crossref | Medline21. Lee, W. L., Liles, W. C. Endothelial Activation, Dysfunction and Permeability during Severe Infections. Curr. Opin. Hematol. 2011, 18, 191–196.
Google Scholar | Crossref | Medline22. Bogatcheva, N. V., Verin, A. D. The Role of Cytoskeleton in the Regulation of Vascular Endothelial Barrier Function. Microvasc. Res. 2008, 76, 202–207.
Google Scholar | Crossref | Medline23. Karki, P., Ke, Y., Tian, Y., et al. Staphylococcus aureus-Induced Endothelial Permeability and Inflammation Are Mediated by Microtubule Destabilization. J. Biol. Chem. 2019, 294, 3369–3384.
Google Scholar | Crossref | Medline24. Thompson, B. T., Chambers, R. C., Liu, K. D. Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2017, 377, 1904–1905.
Google Scholar | Crossref | Medline25. Matthay, M. A., Zemans, R. L., Zimmerman, G. A., et al. Acute Respiratory Distress Syndrome. Nat. Rev. Dis. Primers 2019, 5, 18.
Google Scholar | Crossref | Medline26. Moffat, J. G., Vincent, F., Lee, J. A., et al. Opportunities and Challenges in Phenotypic Drug Discovery: An Industry Perspective. Nat. Rev. Drug Discov. 2017, 16, 531–543.
Google Scholar | Crossref | Medline27. Wegener, J., Seebach, J. Experimental Tools to Monitor the Dynamics of Endothelial Barrier Function: A Survey of In Vitro Approaches. Cell Tissue Res. 2014, 355, 485–514.
Google Scholar | Crossref | Medline28. Günzel, D., Zakrzewski, S. S., Schmid, T., et al. From TER to Trans- and Paracellular Resistance: Lessons from Impedance Spectroscopy. Ann. N.Y. Acad. Sci. 2012, 1257, 142–151.
Google Scholar | Crossref | Medline29. Dubrovskyi, O., Birukova, A. A., Birukov, K. G. Measurement of Local Permeability at Subcellular Level in Cell Models of Agonist- and Ventilator-Induced Lung Injury. Lab. Invest. 2013, 93, 254–263.
Google Scholar | Crossref | Medline30. Gonzales, J. N., Kim, K. M., Zemskova, M. A., et al. Low Anticoagulant Heparin Blocks Thrombin-Induced Endothelial Permeability in a PAR-Dependent Manner. Vascul. Pharmacol. 2014, 62, 63–71.
Google Scholar | Crossref | Medline31. Adam, A. P., Lowery, A. M., Martino, N., et al. Src Family Kinases Modulate the Loss of Endothelial Barrier Function in Response to TNF-α: Crosstalk with p38 Signaling. PLoS One 2016, 11, e0161975.
Google Scholar | Crossref32. Zhang, W., Zhang, Y., Guo, X., et al. Sirt1 Protects Endothelial Cells against LPS-Induced Barrier Dysfunction. Oxidative Med. Cell. Longev. 2017, 2017, 4082102.
Google Scholar | Crossref33. Aveleira, C. A., Lin, C. M., Abcouwer, S. F., et al. TNF-α Signals through PKCzeta/NF-κB to Alter the Tight Junction Complex and Increase Retinal Endothelial Cell Permeability. Diabetes 2010, 59, 2872–2882.
Google Scholar | Crossref | Medline34. Zhang, H., Sun, G. Y. LPS Induces Permeability Injury in Lung Microvascular Endothelium via AT(1) Receptor. Arch. Biochem. Biophys. 2005, 441, 75–83.
Google Scholar | Crossref | Medline35. Kessel, S. L., Chan, L. L.-Y. A High-Throughput Image Cytometry Method for the Formation, Morphometric, and Viability Analysis of Drug-Treated Mammospheres. SLAS Discov. 2020, 25, 723–733.
Google Scholar | Medline36. Pearson, M., LaVoy, A., Chan, L. L.-Y., et al. High-Throughput Viral Microneutralization Method for Feline Coronavirus Using Image Cytometry. J. Virol. Methods 2020, 286, 113979.
Google Scholar | Crossref | Medline37. Xu, Y., Chan, L. L.-Y., Chen, S., et al. Optimization of UC-MSCs Cold-Chain Storage by Minimizing Temperature Fluctuations Using an Automatic Cryopreservation System. Cryobiology 2021, 99, 131–139.
Google Scholar | Crossref | Medline38. Kim, J., Nguyen, T. T. T., Li, Y., et al. Contrasting Effects of Stored Allogeneic Red Blood Cells and Their Supernatants on Permeability and Inflammatory Responses in Human Pulmonary Endothelial Cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2020, 318, L533–L548.
Google Scholar | Crossref39. Nooteboom, A., Bleichrodt, R. P., Hendriks, T. Modulation of Endothelial Monolayer Permeability Induced by Plasma Obtained from Lipopolysaccharide-Stimulated Whole Blood. Clin. Exp. Immunol. 2006, 144, 362–369.
Google Scholar | Crossref | Medline40. Abedi, F., Hayes, A. W., Reiter, R., et al. Acute Lung Injury: The Therapeutic Role of Rho Kinase Inhibitors. Pharmacol. Res. 2020, 155, 104736.
Google Scholar | Crossref | Medline41. Breslin, J. W., Yuan, S. Y. Involvement of RhoA and Rho Kinase in Neutrophil-Stimulated Endothelial Hyperpermeability. Am. J. Physiol. Heart Circ. Physiol. 2004, 286, H1057–H1062.
Google Scholar | Crossref | Medline42. Hasan, B., Li, F. S., Siyit, A., et al. Expression of Aquaporins in the Lungs of Mice with Acute Injury Caused by LPS Treatment. Respir. Physiol. Neurobiol. 2014, 200, 40–45.
Google Scholar | Crossref | Medline43. Hussain, M., Xu, C., Ahmad, M., et al. Acute Respiratory Distress Syndrome: Bench-to-Bedside Approaches to Improve Drug Development. Clin. Pharmacol. Ther. 2018, 104, 484–494.
Google Scholar | Crossref | Medline44. Voiriot, G., Razazi, K., Amsellem, V., et al. Interleukin-6 Displays Lung Anti-Inflammatory Properties and Exerts Protective Hemodynamic Effects in a Double-Hit Murine Acute Lung Injury. Respir. Res. 2017, 18, 64.
Google Scholar | Crossref | Medline45. Waxman, A. B., Mahboubi, K., Knickelbein, R. G., et al. Interleukin-11 and Interleukin-6 Protect Cultured Human Endothelial Cells from H2O2-Induced Cell Death. Am sJ. Respir. Cell Mol. Biol. 2003, 29, 513–522.
Google Scholar | Crossref | Medline

Comments (0)

No login
gif