DEELIG: A Deep Learning Approach to Predict Protein-Ligand Binding Affinity

1. Pantsar, T, Poso, A. Binding affinity via docking: fact and fiction. Molecules. 2018;23:1899. doi:10.3390/molecules23081899.
Google Scholar | Crossref2. Pagadala, N, Syed, K, Tuszynski, J. Software for molecular docking: a review. Biophys Rev. 2017;9:91-102. doi:10.1007/s12551-016-0247-1.
Google Scholar | Crossref | Medline3. Genheden, S, Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov. 2015;10:449-461. doi:10.1517/17460441.2015.1032936.
Google Scholar | Crossref | Medline4. LeCun, Y, Bottou, L, Bengio, Y, Haffner, P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86:2278-2324. doi:10.1109/5.726791.
Google Scholar | Crossref | ISI5. Hubel, DH, Wiesel, TN. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol. 1962;160:106-154. doi:10.1113/jphysiol.1962.sp006837.
Google Scholar | Crossref | Medline | ISI6. Min, S, Lee, B, Yoon, S. Deep learning in bioinformatics. Brief Bioinform. 2017;18:851-869. doi:10.1093/bib/bbw068.
Google Scholar | Crossref | Medline7. Stone, J, Walker, J. Plant protein kinase families and signal transduction. Plant Physiol. 1995;108:451-457. doi:10.1104/pp.108.2.451.
Google Scholar | Crossref | Medline8. Jin, Z, Du, X, Xu, Y, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020;582:289-293. doi:10.1038/s41586-020-2223-y.
Google Scholar | Crossref | Medline9. Rose, PW, Beran, B, Bi, C, et al. The RCSB protein data bank: redesigned website and web services. Nucleic Acids Res. 2010;39:D392-D401. doi:10.1093/nar/gkq1021.
Google Scholar | Crossref | Medline10. Liu, Z, Li, Y, Han, L, et al. PDB-wide collection of binding data: current status of the PDBbind database. Bioinformatics. 2014;31:405-412. doi:10.1093/bioinformatics/btu626.
Google Scholar | Crossref | Medline11. Hu, L, Benson, ML, Smith, RD, Lerner, MG, Carlson, HA. Binding MOAD (Mother Of All Databases). Proteins. 2005;60:333-340. doi:10.1002/prot.20512.
Google Scholar | Crossref | Medline12. Benson, ML, Smith, RD, Khazanov, NA, et al. Binding MOAD, a high-quality protein-ligand database. Nucleic Acids Res. 2008;36:D674-D678. doi:10.1093/nar/gkm911.
Google Scholar | Crossref | Medline13. Desaphy, J, Bret, G, Rognan, D, Kellenberger, E. sc-PDB: a 3D-database of ligandable binding sites – 10 years on. Nucleic Acids Res. 2015;43:D399-D404. doi:10.1093/nar/gku928.
Google Scholar | Crossref | Medline14. Kawabata, T . Detection of multiscale pockets on protein surfaces using mathematical morphology. Proteins. 2010;78:1195-1211. doi:10.1002/prot.22639.
Google Scholar | Crossref | Medline15. Pettersen, EF, Goddard, TD, Huang, CC, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605-1612. doi:10.1002/jcc.20084.
Google Scholar | Crossref | Medline | ISI16. Altschul, SF, Madden, TL, Schäffer, AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389-3402. doi:10.1093/nar/25.17.3389.
Google Scholar | Crossref | Medline | ISI17. Hubbard, SJ, Thornton, JM. “NACCESS,” Computer Program. London, England: Department of Biochemistry and Molecular Biology, University College, 1993.
Google Scholar18. Kabsch, W, Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22:2577-2637. doi:10.1002/bip.360221211.
Google Scholar | Crossref | Medline | ISI19. Yap, CW . PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem. 2011;32:1466-1474. doi:10.1002/jcc.21707.
Google Scholar | Crossref | Medline20. Schrödinger Release 2020-3: QikProp . New York, NY: Schrödinger, LLC, 2020.
Google Scholar21. Krizhevsky, A, Sutskever, I, Hinton, GE. ImageNet classification with deep convolutional neural networks. Commun ACM. 2017;60:1097-1105. doi:10.1145/3065386.
Google Scholar | Crossref22. Simonyan, K, Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv. 2014, preprint arXiv:1409.1556. https://arxiv.org/pdf/1409.1556.pdf.
Google Scholar23. Ioffe, S, Szegedy, C. Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv. 2015, preprint arXiv:1502.03167. https://arxiv.org/pdf/1502.03167.pdf.
Google Scholar24. Dahl, GE, Sainath, TN, Hinton, GE. Improving deep neural networks for LVCSR using rectified linear units and dropout. Paper presented at: IEEE International Conference on Acoustics, Speech and Signal Processing, :8609-8613; Vancouver, BC, Canada. doi:10.1109/ICASSP.2013.6639346.
Google Scholar | Crossref25. Kingma, DP, Ba, J. Adam: a method for stochastic optimization. arXiv. 2014, preprint arXiv:1412.6980. https://arxiv.org/pdf/1412.6980.pdf.
Google Scholar26. Paszke, A, Gross, S, Massa, F, et al. PyTorch: an imperative style, high-performance deep learning library. Adv Neural Inf Process Syst. 2019;32:8024-8035.
Google Scholar27. Stepniewska-Dziubinska, MM, Zielenkiewicz, P, Siedlecki, P. Development and evaluation of a deep learning model for protein–ligand binding affinity prediction. Bioinformatics. 2018;34:3666-3674. doi:10.1093/bioinformatics/bty374.
Google Scholar | Crossref | Medline28. Chen, P, Ke, Y, Lu, Y, et al. DLIGAND2: an improved knowledge-based energy function for protein–ligand interactions using the distance-scaled, finite, ideal-gas reference state. J Cheminform. 2019;11:52. doi:10.1186/s13321-019.
Google Scholar | Crossref29. Li, H, Leung, K-S, Wong, M-H, Ballester, PJ. Low-quality structural and interaction data improves binding affinity prediction via random forest. Molecules. 2015;20:10947-10962. doi:10.3390/molecules200610947.
Google Scholar | Crossref | Medline30. Wang, C, Zhang, Y. Improving scoring-docking-screening powers of protein−ligand scoring functions using random forest. J Comput Chem. 2017;38:169-177. doi:10.1002/jcc.24667.
Google Scholar | Crossref | Medline31. Cang, ZX, Mu, L, Wei, GW. Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening. PLoS Comput Biol. 2018;14:e1005929. doi:10.1371/journal.pcbi.1005929.
Google Scholar | Crossref | Medline32. Nguyen, DD, Wei, GW. AGL-Score: algebraic graph learning score for protein–ligand binding scoring, ranking, docking, and screening. J Chem Inf Model. 2019;59:3291-3304. doi:10.1021/acs.jcim.9b00334.
Google Scholar | Crossref | Medline33. Pokkuluri, PR, Londer, YY, Duke, NE, Long, C, Schiffer, M. Family of cytochrome c7-type proteins from geobacter sulfurreducens: structure of one cytochrome c7 at 1.45 Å resolution. Biochemistry. 2004;43:849-859. doi:10.1021/bi0301439.
Google Scholar | Crossref | Medline34. Pokkuluri, PR, Londer, YY, Yang, X, et al. Structural characterization of a family of cytochromes c(7) involved in Fe(III) respiration by Geobacter sulfurreducens. Biochim Biophys Acta. 2010;1797:222-232. doi:10.1016/j.bbabio.2009.10.007.
Google Scholar | Crossref | Medline35. Pokkuluri, PR, Londer, YY, Duke, NE, et al. Structure of a novel dodecaheme cytochrome c from Geobacter sulfurreducens reveals an extended 12 nm protein with interacting hemes. J Struct Biol. 2011;174:223-233. doi:10.1016/j.jsb.2010.11.022.
Google Scholar | Crossref | Medline36. Li, Y, Rezaei, MA, Li, C, Li, X, Wu, D. DeepAtom: a framework for protein-ligand binding affinity prediction. arXiv. 2019, preprintarXiv:1912.00318. https://arxiv.org/pdf/1912.00318.pdf.
Google Scholar37. Öztürk, H, Özgür, A, Ozkirimli, E. DeepDTA: deep drug–target binding affinity prediction. Bioinformatics. 2018;34:i821-i829. doi:10.1093/bioinformatics/bty593.
Google Scholar | Crossref | Medline38. He, T, Heidemeyer, M, Ban, F, Cherkasov, A, Ester, M. Simboost: a read-across approach for predicting drug–target binding affinities using gradient boosting machines. J Cheminform. 2017;9:24. doi:10.1186/s13321-017-0209-z.
Google Scholar | Crossref | Medline39. Wang, R, Fang, X, Lu, Y, Yang, C-Y, Wang, S. The PDBbind database: methodologies and updates. J Med Chem. 2005;48:4111-4119. doi:10.1021/jm048957q.
Google Scholar | Crossref | Medline40. Wang, R, Fang, X, Lu, Y, Wang, S. The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures. J Med Chem. 2004;47:2977-2980. doi:10.1021/jm030580l.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif