Diagnosis of Anosmia and Hyposmia: A Systematic Review

1. Mann, NM. Management of smell and taste problems. Cleve Clin J Med. 2002; 69(4):329–336.
Google Scholar | Crossref | Medline2. Croy, I, Nordin, S, Hummel, T. Olfactory disorders and quality of life–an updated review. Chem Senses. 2014; 39(3):185–194.
Google Scholar | Crossref | Medline3. Landis, BN, Frasnelli, J, Reden, J, et al. Differences between orthonasal and retronasal olfactory functions in patients with loss of the sense of smell. Arch Otolaryngol Head Neck Surg. 2005; 131(11):977–981.
Google Scholar | Crossref | Medline4. Boesveldt, S, Postma, EM, Boak, D, et al. Anosmia—a clinical review. Chem Senses. 2017; 42(7):513–523.
Google Scholar | Crossref | Medline5. Moher, D, Liberati, A, Tetzlaff, J, et al.; PRISMA Group . Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009; 62(10):1006–1012.
Google Scholar | Crossref | Medline6. Durieux, N, Vandenput, S, Pasleau, F. OCEBM levels of evidence system. Rev Med Liege. 2013; 68(12):644–649.
Google Scholar | Medline7. Sterne, JA, Hernan, MA, Reeves, BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016; 355:i4919.
Google Scholar | Crossref | Medline8. Lotsch, J, Ultsch, A, Hummel, T. How many and which odor identification items are needed to establish normal olfactory function? Chem Senses. 2016; 41(4):339–344.
Google Scholar | Crossref | Medline9. Jackman, AH, Doty, RL. Utility of a three-item smell identification test in detecting olfactory dysfunction. Laryngoscope. 2005; 115(12):2209–2212.
Google Scholar | Crossref | Medline10. Takebayashi, H, Tsuzuki, K, Oka, H, et al. Clinical availability of a self-administered odor questionnaire for patients with olfactory disorders. Auris Nasus Larynx. 2011; 38(1):65–72.
Google Scholar | Crossref | Medline11. Tsukatani, T, Reiter, ER, Miwa, T, Costanzo, RM. Comparison of diagnostic findings using different olfactory test methods. Laryngoscope. 2005; 115(6):1114–1117.
Google Scholar | Crossref | Medline12. Welge-Lussen, A, Gudziol, V, Wolfensberger, M, et al. Olfactory testing in clinical settings—is there additional benefit from unilateral testing? Rhinology. 2010; 48(2): 156–159.
Google Scholar | Medline13. Oleszkiewicz, A, Schriever, VA, Croy, I, et al. Updated sniffin’ sticks normative data based on an extended sample of 9139 subjects. Eur Arch Otorhinolaryngol. 2019; 276(3): 719–728.
Google Scholar | Crossref | Medline14. Poletti, SC, Murta, G, Hahner, A, et al. Olfactory cleft evaluation: a predictor for olfactory function in smell-impaired patients? Eur Arch Otorhinolaryngol. 2018; 275(5):1129–1137.
Google Scholar | Crossref | Medline15. Kobal, G, Palisch, K, Wolf, SR, et al. A threshold-like measure for the assessment of olfactory sensitivity: the “random” procedure. Eur Arch Otorhinolaryngol. 2001; 258(4):168–172.
Google Scholar | Crossref | Medline16. Villwock, JA, Li, J, Moore, C, et al. Affordable rapid olfaction measurement array: a novel, essential Oil-Based test strongly correlated with UPSIT and subjective outcome measures. Ann Otol Rhinol Laryngol. 2020; 129(1):39–45.
Google Scholar | SAGE Journals17. Robson, AK, Woollons, AC, Ryan, J, et al. Validation of the combined olfactory test. Clin Otolaryngol. 1996; 21(6):512–518.
Google Scholar | Crossref | Medline18. Davidson, TM, Murphy, C. Rapid clinical evaluation of anosmia. The alcohol sniff test. Arch Otolaryngol Head Neck Surg. 1997; 123(6):591–594.
Google Scholar | Crossref | Medline19. Rombaux, P, Weitz, H, Mouraux, A, et al. Olfactory function assessed with orthonasal and retronasal testing, olfactory bulb volume, and chemosensory event-related potentials. Arch Otolaryngol Head Neck Surg. 2006; 132(12):1346–1351.
Google Scholar | Crossref | Medline20. Haxel, BR, Bertz-Duffy, S, Faldum, A, et al. The candy smell test in clinical routine. Am J Rhinol Allergy. 2011; 25(4):e145–e148.
Google Scholar | SAGE Journals21. Lotsch, J, Hummel, T. The clinical significance of electrophysiological measures of olfactory function. Behav Brain Res. 2006; 170(1):78–83.
Google Scholar | Crossref | Medline22. Rombaux, P, Bertrand, B, Keller, T, et al. Clinical significance of olfactory event-related potentials related to orthonasal and retronasal olfactory testing. Laryngoscope. 2007; 117(6):1096–1101.
Google Scholar | Crossref | Medline23. Levy, LM, Henkin, RI, Lin, CS, et al. Rapid imaging of olfaction by functional MRI (fMRI): identification of presence and type of hyposmia. J Comput Assist Tomogr. 1999; 23(5):767–775.
Google Scholar | Crossref | Medline24. Levy, LM, Henkin, RI, Hutter, A, et al. Mapping brain activation to odorants in patients with smell loss by functional MRI. J Comput Assist Tomogr. 1998; 22(1):96–103.
Google Scholar | Crossref | Medline25. Moon, WJ, Park, M, Hwang, M, et al. Functional MRI as an objective measure of olfaction deficit in patients with traumatic anosmia. AJNR Am J Neuroradiol. 2018; 39(12):2320–2325.
Google Scholar | Crossref | Medline26. Hoekman, PK, Houlton, JJ, Seiden, AM. The utility of magnetic resonance imaging in the diagnostic evaluation of idiopathic olfactory loss. Laryngoscope. 2014; 124(2): 365–368.
Google Scholar | Crossref | Medline27. Goektas, O, Fleiner, F, Sedlmaier, B, et al. Correlation of olfactory dysfunction of different etiologies in MRI and comparison with subjective and objective olfactometry. Eur J Radiol. 2009; 71(3):469–473.
Google Scholar | Crossref | Medline28. Lotsch, J, Ultsch, A, Eckhardt, M, et al. Brain lesion-pattern analysis in patients with olfactory dysfunctions following head trauma. Neuroimage Clin. 2016; 11:99–105.
Google Scholar | Crossref | Medline29. Atighechi, S, Salari, H, Baradarantar, MH, et al. A comparative study of brain perfusion single-photon emission computed tomography and magnetic resonance imaging in patients with post-traumatic anosmia. Am J Rhinol Allergy. 2009; 23(4):409–412.
Google Scholar | SAGE Journals30. Eftekhari, M, Assadi, M, Kazemi, M, et al. Brain perfusion single photon emission computed tomography findings in patients with posttraumatic anosmia and comparison with radiological imaging. Am J Rhinol. 2006; 20(6):577–581.
Google Scholar | SAGE Journals31. Varney, NR, Bushnell, D. NeuroSPECT findings in patients with posttraumatic anosmia: a quantitative analysis. J Head Trauma Rehabil. 1998; 13(3):63–72.
Google Scholar | Crossref | Medline32. Shiga, H, Taki, J, Washiyama, K, et al. Assessment of olfactory nerve by SPECT-MRI image with nasal thallium-201 administration in patients with olfactory impairments in comparison to healthy volunteers. PloS One. 2013; 8(2):e57671.
Google Scholar | Crossref | Medline33. Kim, YK, Hong, SL, Yoon, EJ, et al. Central presentation of postviral olfactory loss evaluated by positron emission tomography scan: a pilot study. Am J Rhinol Allergy. 2012; 26(3):204–208.
Google Scholar | SAGE Journals34. Varney, NR, Pinkston, JB, Wu, JC. Quantitative PET findings in patients with posttraumatic anosmia. J Head Trauma Rehabil. 2001; 16(3):253–259.
Google Scholar | Crossref | Medline35. Rolls, ET. Taste, olfactory and food texture reward processing in the brain and the control of appetite. Proc Nutr Soc. 2012; 71(4):488–501.
Google Scholar | Crossref | Medline36. Miwa, T, Furukawa, M, Tsukatani, T, et al. Impact of olfactory impairment on quality of life and disability. Arch Otolaryngol Head Neck Surg. 2001; 127(5):497–503.
Google Scholar | Crossref | Medline37. Hummel, T, Whitcroft, KL, Andrews, P, et al. Position paper on olfactory dysfunction. Rhinol Suppl. 2017; 54(26):1–30.
Google Scholar | Crossref | Medline38. Moein, ST, Hashemian, SMR, Mansourafshar, B, et al. Smell dysfunction: a biomarker for COVID-19. Int Forum Allergy Rhinol. 2020; 10(8):944–950.
Google Scholar | Crossref | Medline39. Tong, JY, Wong, A, Zhu, D, et al. The prevalence of olfactory and gustatory dysfunction in COVID-19 patients: a systematic review and meta-analysis. Otolaryngol Head Neck Surg. 2020; 163(4):853–853.
Google Scholar | SAGE Journals40. Kamrava, SK, Farhadi, M, Jalessi, M, et al. University of Pennsylvania smell identification on Iranian population. Iran Red Crescent Med J. 2014; 16(1):e7926.
Google Scholar | Crossref | Medline41. Li, W, Lopez, L, Osher, J, et al. Right orbitofrontal cortex mediates conscious olfactory perception. Psychol Sci. 2010; 21(10):1454–1463.
Google Scholar | SAGE Journals42. Howard, BE, Lal, D. Rhinologic practice special considerations during COVID-19: Visit planning, personal protective equipment, testing, and environmental controls. Otolaryngol Head Neck Surg. 2020; 163(4):676–681.
Google Scholar | SAGE Journals43. Sharma, D, Rubel, KE, Ye, MJ, et al. Cadaveric simulation of endoscopic endonasal procedures: Analysis of droplet splatter patterns during the COVID-19 pandemic. Otolaryngol Head Neck Surg. 2020; 163(1):145–150.
Google Scholar | SAGE Journals44. Workman, AD, Jafari, A, Welling, DB, et al. Airborne aerosol generation during endonasal procedures in the era of COVID-19: risks and recommendations. Otolaryngol Head Neck Surg. 2020; 163(3):465–470.
Google Scholar | SAGE Journals45. Holbrook, EH, Puram, SV, See, RB, et al. Induction of smell through transethmoid electrical stimulation of the olfactory bulb. Int Forum Allergy Rhinol. 2019; 9(2): 158–164.
Google Scholar | Crossref | Medline

Comments (0)

No login
gif