1.
Thorne, N., Auld, D. S., Inglese, J. Apparent Activity in High-Throughput Screening: Origins of Compound-Dependent Assay Interference. Curr. Opin. Chem. Biol. 2010, 14, 315–324.
Google Scholar |
Crossref |
Medline2.
Nelson, K., Dahlin, J., Bisson, J., et al. The Essential Medicinal Chemistry of Curcumin. J. Med. Chem. 2016, 60, 1620–1637.
Google Scholar |
Crossref3.
Simeonov, A., Davis, M. I. Interference with Fluorescence and Absorbance. In Assay Guidance Manual Sittampalam, G., Coussens, N. Eds. Eli Lilly and the National Center for Advancing Translational Science: Bethesda, MD, 2015.
Google Scholar4.
Coussens, N. P., Auld, D., Roby, P., et al. Compound-Mediated Assay Interferences in Homogenous Proximity Assays. In Assay Guidance Manual Sittampalam, G., Coussens, N. Eds. Eli Lilly and the National Center for Advancing Translational Science: Bethesda, MD, 2020.
Google Scholar5.
Auld, D. S., Inglese, J. Interferences with Luciferase Reporter Enzymes. In Assay Guidance Manual Sittampalam, G., Coussens, N. Eds. Eli Lilly and the National Center for Advancing Translational Science: Bethesda, MD, 2016.
Google Scholar6.
Auld, D. S., Inglese, J., Dahlin, J. L. Assay Interference by Aggregation. In Assay Guidance Manual Sittampalam, G., Coussens, N. Eds. Eli Lilly and the National Center for Advancing Translational Science: Bethesda, MD, 2017.
Google Scholar7.
Dahlin, J. L., Baell, J. B., Walters, M. A. Assay Interference by Chemical Reactivity. In Assay Guidance Manual Sittampalam, G., Coussens, N. Eds. Eli Lilly and the National Center for Advancing Translational Science: Bethesda, MD, 2015.
Google Scholar8.
Hermann, J. C., Chen, Y., Wartchow, C., et al. Metal Impurities Cause False Positives in High-Throughput Screening Campaigns. ACS Med. Chem. Lett. 2013, 4, 197–200.
Google Scholar |
Crossref |
Medline9.
Morreale, F., Testa, A., Chaugule, V., et al. Mind the Metal: A Fragment Library-Derived Zinc Impurity Binds the E2 Ubiquitin-Conjugating Enzyme Ube2T and Induces Structural Rearrangements. J. Med. Chem. 2017, 60, 8183–8191.
Google Scholar |
Crossref |
Medline10.
Wipf, P., Arnold, D., Carter, K., et al. A Case Study from the Chemistry Core of the Pittsburgh Molecular Library Screening Center: The Polo-Like Kinase Polo-Box Domain (Plk1-PBD). Curr. Topics Med. Chem. 2009, 9, 1194–1205.
Google Scholar |
Crossref |
Medline11.
Tarzia, G., Antonietti, F., Duranti, A., et al. Identification of a Bioactive Impurity in a Commercial Sample of 6-Methyl-2-p-Tolylaminobenzo[d][1,3]oxazin-4-one (URB754). Ann. Chim. 2007, 97, 887–894.
Google Scholar |
Crossref |
Medline12.
Dahlin, J. L., Auld, D. S., Rothenaigner, I., et al. Nuisance Compounds in Cellular Assays. Cell Chem. Biol. 2021, 28, 356–370.
Google Scholar |
Crossref |
Medline13.
Coussens, N. P., Sittampalam, G. S., Guha, R., et al. Assay Guidance Manual: Quantitative Biology and Pharmacology in Preclinical Drug Discovery. Clin. Transl. Sci. 2018, 11, 461–470.
Google Scholar |
Crossref |
Medline14.
Dahlin, J. L., Sinville, R., Solberg, J., et al. A Cell-Free Fluorometric High-Throughput Screen for Inhibitors of Rtt109-Catalyzed Histone Acetylation. PLoS One 2013, 8, e78877.
Google Scholar |
Crossref15.
Dahlin, J. L., Nissink, J. W. M., Strasser, J. M., et al. PAINS in the Assay: Chemical Mechanisms of Assay Interference and Promiscuous Enzymatic Inhibition Observed during a Sulfhydryl-Scavenging HTS. J. Med. Chem. 2015, 58, 2091–2113.
Google Scholar |
Crossref |
Medline16.
Wilson, J. M., Wu, D., Motiu-DeGrood, R., et al. A Spectrophotometric Method for Studying the Rates of Reaction of Disulfides with Protein Thiol Groups Applied to Bovine Serum Albumin. J. Am. Chem. Soc. 1980, 102, 359–363.
Google Scholar |
Crossref17.
Huth, J. R., Mendoza, R., Olejniczak, E. T., et al. ALARM NMR: A Rapid and Robust Experimental Method to Detect Reactive False Positives in Biochemical Screens. J. Am. Chem. Soc. 2005, 127, 217–224.
Google Scholar |
Crossref |
Medline18.
Dahlin, J., Singh, G., Cuellar, M., et al. ALARM NMR for HTS Triage and Chemical Probe Validation. Curr. Protoc. Chem. Biol. 2018, 10, 91–117.
Google Scholar |
Crossref |
Medline19.
Baell, J. B., Holloway, G. A. New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) from Screening Libraries and for Their Exclusion in Bioassays. J. Med. Chem. 2010, 53, 2719–2740.
Google Scholar |
Crossref |
Medline20.
Walters, W. P., Namchuk, M. Designing Screens: How to Make Your Hits a Hit. Nat. Rev. Drug Discov. 2003, 2, 259–266.
Google Scholar |
Crossref |
Medline21.
Lagorce, D., Sperandio, O., Baell, J., et al. FAF-Drugs3: A Web Server for Compound Property Calculation and Chemical Library Design. Nucleic Acids Res. 2015, 43, W200–W207.
Google Scholar |
Crossref22.
Chakravorty, S. J., Chan, J., Greenwood, M. N., et al. Nuisance Compounds, PAINS Filters, and Dark Chemical Matter in the GSK HTS Collection. SLAS Discov. 2018, 23, 532–545.
Google Scholar |
Abstract23.
Vidler, L. R., Watson, I. A., Margolis, B. J., et al. Investigating the Behavior of Published PAINS Alerts Using a Pharmaceutical Company Data Set. ACS Med. Chem. Lett. 2018, 9, 792–796.
Google Scholar |
Crossref |
Medline24.
Baell, J., Nissink, J. Seven Year Itch: Pan-Assay Interference Compounds (PAINS) in 2017—Utility and Limitations. ACS Chem. Biol. 2018, 13, 36–44.
Google Scholar |
Crossref |
Medline25.
Yang, J. J., Ursu, O., Lipinski, C. A., et al. BadApple: Promiscuity Patterns from Noisy Evidence. J. Cheminform. 2016, 8, 29.
Google Scholar |
Crossref |
Medline26.
Soares, K. M., Blackmon, N., Shun, T. Y., et al. Profiling the NIH Small Molecule Repository for Compounds That Generate H2O2 by Redox Cycling in Reducing Environments. Assay Drug Dev. Technol. 2010, 8, 152–174.
Google Scholar |
Crossref |
Medline27.
Zhuang, C., Narayanapillai, S., Zhang, W., et al. Rapid Identification of Keap1-Nrf2 Small-Molecule Inhibitors through Structure-Based Virtual Screening and Hit-Based Substructure Search. J. Med. Chem. 2014, 57, 1121–1126.
Google Scholar |
Crossref |
Medline28.
Qin, J., Xie, P., Ventocilla, C., et al. Identification of a Novel Family of BRAFV600E Inhibitors. J. Med. Chem. 2012, 55, 5220–5230.
Google Scholar |
Crossref |
Medline29.
Abulwerdi, F., Liao, C., Liu, M., et al. A Novel Small-Molecule Inhibitor of mcl-1 Blocks Pancreatic Cancer Growth In Vitro and In Vivo. Mol. Cancer Ther. 2014, 13, 565–575.
Google Scholar |
Crossref |
Medline30.
Singh, J., Petter, R., Baillie, T., et al. The Resurgence of Covalent Drugs. Nat. Rev. Drug Discov. 2011, 10, 307–317.
Google Scholar |
Crossref |
Medline31.
Strelow, J. A Perspective on the Kinetics of Covalent and Irreversible Inhibition. SLAS Discov. 2017, 22, 3–20.
Google Scholar |
Abstract32.
Dahlin, J. L., Nissink, J. W. M., Francis, S., et al. Post-HTS Case Report and Structural Alert: Promiscuous 4-Aroyl-1,5-Disubstituted-3-Hydroxy-2H-pyrrol-2-one Actives Verified by ALARM NMR. Bioorg. Med. Chem. Lett. 2015, 25, 4740–4752.
Google Scholar |
Crossref |
Medline33.
Shoichet, B. K. Interpreting Steep Dose-Response Curves in Early Inhibitor Discovery. J. Med. Chem. 2006, 49, 7274–7277.
Google Scholar |
Crossref |
Medline34.
Feng, B. Y., Shoichet, B. K. A Detergent-Based Assay for the Detection of Promiscuous Inhibitors. Nat. Protoc. 2006, 1, 550–553.
Google Scholar |
Crossref |
Medline35.
Duan, D., Doak, A., Nedyalkova, L., et al. Colloidal Aggregation and the In Vitro Activity of Traditional Chinese Medicines. ACS Chem. Biol. 2015, 10, 978–988.
Google Scholar |
Crossref |
Medline36.
Irwin, J., Duan, D., Torosyan, H., et al. An Aggregation Advisor for Ligand Discovery. J. Med. Chem. 2015, 58, 7076–7087.
Google Scholar |
Crossref |
Medline37.
Alves, V. M., Capuzzi, S. J., Braga, R., et al. SCAM Detective: Accurate Predictor of Small, Colloidally-Aggregating Molecules. J. Chem. Inf. Model. 2020, 60, 4056–4063.
Google Scholar |
Crossref |
Medline38.
Coussens, N. P., Kales, S. C., Henderson, M. J., et al. High-Throughput Screening with Nucleosome Substrate Identifies Small-Molecule Inhibitors of the Human Histone Lysine Methyltransferase NSD2. J. Biol. Chem. 2018, 293, 13750–13765.
Google Scholar |
Crossref |
Medline39.
Hsiao, K., Zegzouti, H., Goueli, S. A. Methyltransferase-Glo: A Universal, Bioluminescent and Homogenous Assay for Monitoring All Classes of Methyltransferases. Epigenomics 2016, 8, 321–339.
Google Scholar |
Crossref |
Medline40.
Inglese, J., Auld, D., Jadhav, A., et al. Quantitative High-Throughput Screening: A Titration-Based Approach That Efficiently Identifies Biological Activities in Large Chemical Libraries. Proc. Nat. Acad. Sci. U.S.A. 2006, 103, 11473–11478.
Google Scholar |
Crossref |
Medline41.
Reimer, D., Hughes, C. C. Thiol-Based Probe for Electrophilic Natural Products Reveals That Most of the Ammosamides Are Artifacts. J. Nat. Prod. 2017, 80, 126–133.
Google Scholar |
Crossref |
Medline42.
Vogt, A., McDonald, P. R., Tamewitz, A., et al. A Cell-Active Inhibitor of Mitogen-Activated Protein Kinase Phosphatases Restores Paclitaxel-Induced Apoptosis in Dexamethasone-Protected Cancer Cells. Mol. Cancer Ther. 2008, 7, 330–340.
Google Scholar |
Crossref |
Medline43.
Lazo, J. S., Aslan, D. C., Southwick, E. C., et al. Discovery and Biological Evaluation of a New Family of Potent Inhibitors of the Dual Specificity Protein Phosphatase Cdc25. J. Med. Chem. 2001, 44, 4042–4049.
Google Scholar |
Crossref |
Medline44.
Johnston, P. A., Soares, K. M., Shinde, S. N., et al. Development of a 384-Well Colorimetric Assay to Quantify Hydrogen Peroxide Generated by the Redox Cycling of Compounds in the Presence of Reducing Agents. ASSAY Drug Dev. Technol. 2008, 6, 505–518.
Google Scholar |
Crossref |
Medline45.
Blum, G., Ibáñez, G., Rao, X., et al. Small-Molecule Inhibitors of SETD8 with Cellular Activity. ACS Chem. Biol. 2014, 9, 2471–2478.
Google Scholar |
Crossref |
Medline46.
Dahlin, J., Walters, M. The Essential Roles of Chemistry in High-Throughput Screening Triage. Future Med. Chem. 2014, 6, 1265–1290.
Google Scholar |
Crossref |
Medline
Comments (0)