1.
Nagy, E, Jermendy, AL, Merkely, B, Maurovich-Horvat, P. Clinical importance of epicardial adipose tissue. Arch Med Sci. 2017;13:864-874.
Google Scholar |
Crossref |
Medline2.
Iacobellis, G . Epicardial and pericardial fat: close, but very different. Obesity. 2009;17:625; author reply 626-627.
Google Scholar |
Crossref |
Medline |
ISI3.
Sacks, HS, Fain, JN. Human epicardial adipose tissue: a review. Am Heart J. 2007;153:907-917.
Google Scholar |
Crossref |
Medline |
ISI4.
Mazurek, T, Zhang, L, Zalewski, A, et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 2003;108:2460-2466.
Google Scholar |
Crossref |
Medline |
ISI5.
Talman, AH, Psaltis, PJ, Cameron, JD, Meredith, IT, Seneviratne, SK, Wong, DT. Epicardial adipose tissue: far more than a fat depot. Cardiovasc Diagn Ther. 2014;4:416-429.
Google Scholar |
Medline6.
Nerlekar, N, Brown, AJ, Muthalaly, RG, et al. Association of epicardial adipose tissue and high-risk plaque characteristics: a systematic review and meta-analysis. J Am Heart Assoc. 2017;6:e006379.
Google Scholar |
Crossref |
Medline7.
Zhou, M, Wang, H, Chen, J, Zhao, L. Epicardial adipose tissue and atrial fibrillation: possible mechanisms, potential therapies, and future directions. Pacing Clin Electrophysiol. 2020;43:133-145.
Google Scholar |
Crossref |
Medline8.
Bertaso, AG, Bertol, D, Duncan, BB, Foppa, M. Epicardial fat: definition, measurements and systematic review of main outcomes. Arq Bras Cardiol. 2013;101:e18-e28.
Google Scholar |
Medline |
ISI9.
Koepp, KE, Obokata, M, Reddy, YNV, Olson, TP, Borlaug, BA. Hemodynamic and functional impact of epicardial adipose tissue in heart failure with preserved ejection fraction. JACC Heart Fail. 2020;8:657-666.
Google Scholar |
Crossref |
Medline10.
Davidovich, D, Gastaldelli, A, Sicari, R. Imaging cardiac fat. Eur Heart J Cardiovasc Imaging. 2013;14:625-630.
Google Scholar |
Crossref |
Medline11.
Nerlekar, N, Baey, YW, Brown, AJ, et al. Poor correlation, reproducibility, and agreement between volumetric versus linear epicardial adipose tissue measurement: a 3D computed tomography versus 2D echocardiography comparison. JACC Cardiovasc Imaging. 2018;11:1035-1036.
Google Scholar |
Crossref |
Medline12.
Milanese, G, Silva, M, Bruno, L, et al. Quantification of epicardial fat with cardiac CT angiography and association with cardiovascular risk factors in symptomatic patients: from the ALTER-BIO (Alternative Cardiovascular Bio-Imaging markers) registry. Diagn Interv Radiol. 2019;25:35-41.
Google Scholar |
Crossref |
Medline13.
Tam, V, Patel, N, Turcotte, M, Bosse, Y, Pare, G, Meyre, D. Benefits and limitations of genome-wide association studies. Nat Rev Genet. 2019;20:467-484.
Google Scholar |
Crossref |
Medline14.
Lewis, CM, Vassos, E. Polygenic risk scores: from research tools to clinical instruments. Genome Med. 2020;12:44.
Google Scholar |
Crossref |
Medline15.
Igo, RP, Kinzy, TG, Cooke Bailey, JN. Genetic risk scores. Curr Protoc Hum Genet. 2019;104:e95.
Google Scholar |
Medline16.
Pereira, A, Mendonca, MI, Sousa, AC, et al. Genetic risk score and cardiovascular mortality in a southern european population with coronary artery disease. Int J Clin Pract. 2017;71:1-8.
Google Scholar |
Crossref |
Medline17.
McCarthy, JJ, Parker, A, Salem, R, et al. Large scale association analysis for identification of genes underlying premature coronary heart disease: cumulative perspective from analysis of 111 candidate genes. J Med Genet. 2004;41:334-341.
Google Scholar |
Crossref |
Medline |
ISI18.
McPherson, R . Genome-wide association studies of cardiovascular disease in European and Non-European populations. Curr Genet Med Rep. 2014;2:1-12.
Google Scholar |
Crossref19.
Tran, T, Small, G, Cocker, M, Yam, Y, Chow, BJ. A single slice measure of epicardial adipose tissue can serve as an indirect measure of total epicardial adipose tissue burden and is associated with obstructive coronary artery disease. Eur Heart J Cardiovasc Imaging. 2014;15:423-430.
Google Scholar |
Crossref |
Medline20.
Oyama, N, Goto, D, Ito, YM, et al. Single-slice epicardial fat area measurement: do we need to measure the total epicardial fat volume? Jpn J Radiol. 2011;29:104-109.
Google Scholar |
Crossref |
Medline21.
Parikh, RM, Mohan, V. Changing definitions of metabolic syndrome. Indian J Endocrinol Metab. 2012;16:7-12.
Google Scholar |
Crossref |
Medline22.
Rabkin, SW . The relationship between epicardial fat and indices of obesity and the metabolic syndrome: a systematic review and meta-analysis. Metab Syndr Relat Disord. 2014;12:31-42.
Google Scholar |
Crossref |
Medline |
ISI23.
Christensen, RH, Hansen, CS, von Scholten, BJ, et al. Epicardial and pericardial adipose tissues are associated with reduced diastolic and systolic function in type 2 diabetes. Diabetes Obes Metab. 2019;21:2006-2011.
Google Scholar |
Crossref |
Medline24.
Li, Y, Liu, B, Li, Y, et al. Epicardial fat tissue in patients with diabetes mellitus: a systematic review and meta-analysis. Cardiovasc Diabetol. 2019;18:3.
Google Scholar |
Crossref |
Medline25.
Tadros, TM, Massaro, JM, Rosito, GA, et al. Pericardial fat volume correlates with inflammatory markers: the Framingham Heart Study. Obesity. 2010;18:1039-1045.
Google Scholar |
Crossref |
Medline26.
Villasante Fricke, AC, Iacobellis, G. Epicardial adipose tissue: clinical biomarker of cardio-metabolic risk. Int J Mol Sci. 2019;20:5989.
Google Scholar |
Crossref27.
Dutheil, F, Gordon, BA, Naughton, G, et al. Cardiovascular risk of adipokines: a review. J Int Med Res. 2018;46:2082-2095.
Google Scholar |
SAGE Journals |
ISI28.
Iacobellis, G, Assael, F, Ribaudo, MC, et al. Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obes Res. 2003;11:304-310.
Google Scholar |
Crossref |
Medline29.
Iacobellis, G, Ribaudo, MC, Assael, F, et al. Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J Clin Endocrinol Metab. 2003;88:5163-5168.
Google Scholar |
Crossref |
Medline |
ISI30.
Hamjane, N, Benyahya, F, Nourouti, NG, Mechita, MB, Barakat, A. Cardiovascular diseases and metabolic abnormalities associated with obesity: what is the role of inflammatory responses? A systematic review. Microvasc Res. 2020;131:104023.
Google Scholar |
Crossref |
Medline31.
Al-Talabany, S, Mordi, I, Graeme Houston, J, et al. Epicardial adipose tissue is related to arterial stiffness and inflammation in patients with cardiovascular disease and type 2 diabetes. BMC Cardiovasc Disord. 2018;18:31.
Google Scholar |
Crossref |
Medline32.
Sahasrabuddhe, AV, Pitale, SU, Sivanesan, SD, Deshpande, PK, Deshpande, SP, Daiwile, A. Pathogenic gene expression of epicardial adipose tissue in patients with coronary artery disease. Indian J Med Res. 2020;151:554-561.
Google Scholar |
Crossref |
Medline33.
Chechi, K, Vijay, J, Voisine, P, et al. UCP1 expression-associated gene signatures of human epicardial adipose tissue. JCI Insight. 2019;4:e123618.
Google Scholar |
Crossref |
Medline34.
Vacca, M, Di Eusanio, M, Cariello, M, et al. Integrative miRNA and whole-genome analyses of epicardial adipose tissue in patients with coronary atherosclerosis. Cardiovasc Res. 2016;109:228-239.
Google Scholar |
Crossref |
Medline35.
Tan, L, Xu, Q, Wang, Q, Shi, R, Zhang, G. Identification of key genes and pathways affected in epicardial adipose tissue from patients with coronary artery disease by integrated bioinformatics analysis. PeerJ. 2020;8:e8763.
Google Scholar |
Crossref |
Medline36.
Fox, CS, White, CC, Lohman, K, et al. Genome-wide association of pericardial fat identifies a unique locus for ectopic fat. PLoS Genet. 2012;8:e1002705.
Google Scholar |
Crossref |
Medline37.
Moll, S, Varga, EA. Homocysteine and MTHFR Mutations. Circulation. 2015;132:e6-e9.
Google Scholar |
Crossref |
Medline38.
Momin, M, Jia, J, Fan, F, et al. Relationship between plasma homocysteine level and lipid profiles in a community-based Chinese population. Lipids Health Dis. 2017;16:54.
Google Scholar |
Crossref |
Medline39.
Balcioğlu, AS, Durakoğlugil, ME, Ciçek, D, Bal, UA, Boyaci, B, Müderrisoğlu, H. Epicardial adipose tissue thickness and plasma homocysteine in patients with metabolic syndrome and normal coronary arteries. Diabetol Metab Syndr. 2014;6:62.
Google Scholar |
Crossref |
Medline40.
Peterson, RE, Kuchenbaecker, K, Walters, RK, et al. Genome-wide association studies in ancestrally diverse populations: opportunities, methods, pitfalls, and recommendations. Cell. 2019;179:589-603.
Google Scholar |
Crossref |
Medline41.
Morales, J, Welter, D, Bowler, EH, et al. A standardized framework for representation of ancestry data in genomics studies, with application to the NHGRI-EBI GWAS Catalog. Genome Biol. 2018;19:21.
Google Scholar |
Crossref |
Medline42.
Nerlekar, N, Thakur, U, Lin, A, et al. The natural history of epicardial adipose tissue volume and attenuation: a long-term prospective cohort follow-up study. Sci Rep. 2020;10:7109.
Google Scholar |
Crossref |
Medline43.
Goeller, M, Achenbach, S, Marwan, M, et al. Epicardial adipose tissue density and volume are related to subclinical atherosclerosis, inflammation and major adverse cardiac events in asymptomatic subjects. J Cardiovasc Comput Tomogr. 2018;12:67-73.
Google Scholar |
Crossref |
Medline
Comments (0)